PD-184
APPROVED BY COUNTY
COUNCIL 1/31/23
FINAL VERSION
CONDITIONS INCORPORATED

Development Guidelines For Elms Glen

Charleston County, South Carolina

Approved January 31, 2023 (This PD Guideline document supersedes the previous edition)

Table of Contents

1.	Planned Development Name	3
2.	Statement of Objectives:	
3.	Intent and Results of Proposed PD:	4
4.	Site Information:	
5.	Land Uses and Density/Intensity and Dimensional Standards:	8
6.	Maximum Density:	
7.	Affordable / Workforce Dwelling Units:	.10
8.	Impact Assessment / Analysis:	.10
9.	Traffic Impact Study:	.11
10.	Development Schedule:	.11
11.	Open Space:	.11
12.	Streets:	.11
13.	Stormwater:	
14.	Compliance with the ZLDR:	.12
15.	Historic and Archeological Survey:	.13
16.	Letters of Coordination:	.13
17.	Dimensional Standards:	_
18.	Architectural Guidelines:	
19.	Lots to Abut Common Open Space:	.14
20.	Access:	.14
21.	Commercial Areas and Industrial Areas:	
22.	Areas Designated for Future Use:	.14
23.	Signs:	.15
24.	Parking:	.15
25.	Tree Protection:	.15
26.	Resource Areas:	.15
27.	Common Open Space:	
28.	Landscape and Buffer Requirements:	.17
29.	Home Owner's Association (HOA)	.17
30.	Appendix Items	.19

No person shall erect any building, structure, or sign within the Planned Development except in conformance with the Zoning Ordinance and these Development Guidelines. With the exception of the Commercial/Industrial area, all items not specifically addressed pertaining to Single Family Attached lots will follow current ZLDR Ar. 4.14 – UR development standards and all items pertaining to Single Family Detached lots will follow current ZLDR Ar. 4.12 - R-4 development standards. The UR development standards shall not apply to the existing 5.45-acre Commercial/Industrial area located on parcel ID no. 388-00-00-223 and labeled as the 'EquipmentShare' property on Exhibit A of this PD amendment. The Commercial/Industrial area will continue to conform to the use and development standards as outlined in the US Highway 78 Business Park, case no. PD-70.

1. Planned Development Name

Elms Glen (formerly called US Highway 78 Business Park)

2. Statement of Objectives:

It is the purpose of these guidelines to set forth the objectives and design standards for the U.S. Highway 78 Business Park and The Elms Glen community. The following guidelines are being amended to direct the existing Planned Development of 28.67 acres, to incorporate an additional 15.49 acres and to redefine the land uses. This planned development is to be developed as a mixed-use development offering single-family detached and attached homes as well as maintaining a Commercial/Industrial land use.

The planned development is located at the corner of Highway 78 and Von Ohsen Road in Charleston County, South Carolina and is made up by ten (10) parcels of land equaling 44.16 Acres, where 42.30 acres are Highland, 1.86 acres are existing Wetland subject to applicable jurisdictional regulatory agency authority and there are no saltwater wetlands. The existing parcels are a mix of zoning consisting of the existing PD (388-00-00-223 - 5.45 Ac., 388-00-00-443 -6.03 Ac. & 388-00-00-163 - 17.18 Ac.), Low Density Residential (R-4) (388-00-00-178 – 0.33 Ac., 388-00-00-177 – 0.33 Ac., 388-00-00-139 – 0.33 Ac., 388-00-00-118 - 1.22 Ac., 388-00-00-119 - 4.43 Ac. & 388-00-00-140 - 4.31 Ac.) and Neighborhood Commercial (CN) (388-00-00-116 - 4.55 Ac.). The PD proposes a mixed-use development that will consist of residential and Commercial/Industrial uses. The residential land use will cover 38.71 acres proposing a maximum of 290 dwelling units with a mix of Single-Family attached and detached homes. The blended maximum density will not exceed 8 units/acre. Density is based off highland acreage only and does not include fresh water or saltwater wetlands. Under the current zoning 59 units could be developed as the existing PD does not allow for residential development. The minimum required open space for the residential land use will be 0.05 acres per lot plus 10% of nonresidential acreage for a total of 16 acres. (approximately 14.5 acres for the residential land use portion and .54 for the commercial/industrial land use area.) The Commercial/Industrial land use will be reduced to 5.45 acres (located on parcel ID no. 388-00-00-223 as shown on Exhibit A) and will adhere to US Highway 78 Business Park PD-70 adopted in August 1998, revised in October 1998, and as re-stated within these guidelines. The proposed residential development areas, as outlined within this PD, shall not impact the existing or future land uses and development standards within the 5.45-acre Commercial/Industrial area. The Commercial/Industrial area shall continue to operate and develop in accordance with the original PD-70 case.

Two community workshops were held in order to give the community a chance to voice their thoughts and / or opinions of the project as well as to allow the community to ask questions about the project.

The first was held virtually on 4/27/21. There was approximately 10 people who attended that virtual meeting and there was not any specific feedback related to the proposed development, rather there was general concerns of traffic in the area and inquiries about the proposal.

The second community workshop was held on December 13th, 2022, from 6PM to 8PM at First Church of God (10383 US-78, Summerville, SC 29483). We printed 500 flyers and hand delivered them to residents in the immediate area. We also sent out an email to the "North Area Interested Parties" list and contacted several local church leaders so that they may inform their congregations. We did not have anyone attend the community workshop.

3. Intent and Results of Proposed PD:

The proposed mixed-use development meets and exceed the objectives contained in Zoning and Land Development Regulations (ZLDR) Section 4.23.4, by proposing multiple land uses providing character and quality for this new community as well as the surrounding neighborhoods. This will be done by preserving natural areas, and grand trees where possible and maintaining scenic features of the site within proposed common open space system and buffers.

The PD is also consistent with the intent and goals of the Comprehensive Plan adopted October 9, 2018. The following is a summary listing of how they are met within the proposed PD Master Plan:

Land Use Element Goal – "Accommodate growth that respects the unique character of the county, promotes economic opportunity, respects private property rights, and is coordinated with the provision of community facilities, but protects cultural and natural resources."

The existing properties are a mix of Commercial/Industrial, institutional, and residential uses. The amendment of the existing PD guidelines will allow for the disparate parcels to come together and create a neighborhood that has the ability to accommodate growth that respects the unique character of the County. This will be done by creating a walkable community featuring tree lined streets, and community open spaces that promote interaction of friends and neighbors. Reducing lot sizes and setbacks accommodates growth and creates a compact and walkable community. The amended PD will maintain an existing Commercial/Industrial use that is located along Highway 78 frontage to promote economic opportunities.

Economic Development Element Goal – "Charleston County will be an integral part of a strong, diverse, and growing regional economy, providing economic opportunities for its citizens and fostering fiscal health for County government services and facilities."

The amended PD is preserving a portion of the existing Commercial/Industrial land use area that is fronting onto Highway 78. This land use will allow for economic development, create employment opportunities for the existing and future residents of the area while providing services to the residents.

Natural Resources Element Goal – "To preserve, enhance, and revitalize natural resources, such as rivers, creeks, wetlands, aquatic and wildlife habitat, beaches and dunes, groundwater, forests, farmland soils, and air quality, and take actions to mitigate potential negative impacts of growth and development."

The proposed PD development will be required to obtain approvals of all site improvement plans from applicable jurisdictional agencies including but not limited to South Carolina Department of Health and Environmental Control (SCDHEC), Office of Coastal Resource Management (OCRM), SCDHEC Bureau of Water and Charleston County. Any wetland impacts are subject to review, approval, and permitting by applicable jurisdictional agencies.

The PD design is proposing to accommodate the existing topography of the site as well as the existing features on site, like drainage ditches, to create appropriate drainage storage without creating negative impact upon existing drainage rights-of-way. Development will be created around existing grand trees and areas immediately surrounding the trees will be incorporated into common open space areas whenever feasible. Existing trees combined with newly planted landscape buffers, open spaces and street trees will be incorporated into the required guidelines to create an aesthetically pleasing design and visual buffer that is environmentally sensitive to the site and the existing vegetation.

Cultural Resources Element Goal – "Cultural, historic and archeological resources, unique settlement patterns of traditional Lowcountry communities (such as historically African-American communities and family settlements), and traditional activities (such as Sweetgrass Basket Making) should be preserved and protected from potential negative impacts of growth and development."

There are no cultural, historic, and archeological sites found on site or in close proximity to the site. However, the design of the Planned Development will be sensitive to the surroundings though creating aesthetically pleasing neighborhood with visual buffers and large common open space system.

Population Element Goal – "A socioeconomically diverse and growing population will be accommodated by Charleston County in an environmentally and fiscally sustainable manner with particular attention to low to moderate income residents."

Elms Glen will provide an array of the housing products to accommodate the growing County population. The various home options will provide the opportunity to create a socioeconomically diverse neighborhood in line with the Comprehensive Plan goal.

Housing Element Goal – "Quality housing that is affordable will be encouraged for people of all ages, incomes and physical abilities."

Elms Glen will provide array of house product ranging in prices while providing a high-quality development. The intent is to develop a portion of the PD with a mix of single-family attached and detached homes. The community can attract a population of all ages and incomes and ADA accessible sidewalks and amenities will attract a population of all abilities.

Transportation Element Goal – "A transportation system that is coordinated with land use patterns and community character. The level of service should support economic development and a high-quality life."

Elms Glen will provide a network of public and/or private roads and trails to support the community's multimodal transportation needs. In addition, a traffic study has been completed for the development and it indicates that mitigation measures on Highway 78 and Von Ohsen Road will likely be necessary. These mitigation measure have the potential to help alleviate localized traffic congestion.

Community Facilities Element Goal – "Community facilities and services will be provided in a fiscally responsible manner with adequate levels of service and will be coordinated with surrounding jurisdictions and linked to land use planning and development decisions to ensure capacity for expected growth."

This site design received support from public services and facilities in form of coordination letters stating that there are an appropriate size facilities and services level in place to fulfill demand in adequate manner. The coordination letters are enclosed in Appendix section of this document.

Priority Investment, Implementation, and Coordination Element Goal – "Public infrastructure and planning projects will be prioritized through coordination with adjacent and relevant jurisdictions and agencies."

This site design received support from public infrastructure and utilities providers in form of coordination letters stating that there is an appropriate infrastructure in place to fulfill demand for utilities in adequate manner. The coordination letters are enclosed in Appendix section of this document.

Energy Element Goal – "Promote use of alternative energy sources and energy conservation measures that benefit our community."

The PD site is within the Urban Growth Boundary, and under the urban/suburban designation which allows for the proposed higher intensity infill development with homes, businesses, and industries. This site is contiguous to existing developments and compact in design which helps to prevent premature and costly over extension of the public services and infrastructure, such as water and sewer utilities. A denser mixed-use community within the Urban Growth Boundary allows other activities like recreation, open space, and agriculture to happen outside the Urban Growth Boundary which begins to create a sustainable development pattern. Elms Glen also encourages alternative forms of transportation, like walking and biking.

4. Site Information:

Total Site Acreage:

TMS #'s	Highland Acreage		Wetland Acreage	Total Acreage		Existing Zoning	Max. Units Allowed Under Ex. Zoning***	Max. Units Allowed under PD***
388-00- 00-223*	5.45	Ac.	0 Ac.	5.45	Ac.	PD	0	0
388-00- 00-443*	6.03	Ac.	0 Ac.	6.03	Ac.	PD	0	48
388-00- 00-163*	15.41	Ac.	1.77 Ac.	17.18	Ac.	PD	0	123
388-00- 00-116	4.55	Ac.	0 Ac.	4.55	Ac.	CN	18	36
388-00- 00-178	0.33	Ac.	0 Ac.	0.33	Ac.	R-4	1	2
388-00- 00-177	0.33	Ac.	0 Ac.	0.33	Ac.	R-4	1	2
388-00- 00-139	0.33	Ac.	0 Ac.	0.33	Ac.	R-4	1	2
388-00- 00-118	1.22	Ac.	0 Ac.	1.22	Ac.	R-4	4	9
388-00- 00-119	4.34	Ac.	0.09 Ac.	4.43	Ac.	R-4	17	34
388-00- 00-140	4.31	Ac.	0 Ac.	4.31	Ac.	R-4	17	34
Totals	42.30	Acres	1.86 Acres**	44.16	Acres		59	290

^{*}The Highway 78 Business Park PD parcel was all under TMS# 388-00-00-163, but it has been subdivided into three separate parcels.

^{**}The existing wetlands acreages are subject to the authority of applicable jurisdictional agencies. No wetland impacts are allowed without prior approval of jurisdictional agencies.

^{***}Density was calculated using Highland Acreage only.

5. Land Uses and Density/Intensity and Dimensional Standards:

Elms Glen shall follow Charleston County ZLDR Chapter 6 Use Regulations except as listed below. The residential land use areas within Elms Glen shall allow by right, single-family dwelling units both attached and detached. The commercial/industrial land use area shall be allowed uses as defined in PD-70.

Notes:

- 1. The below calculations/quantities for density and minimum lot area do not include freshwater wetland acreage.
- 2. The Single Family Attached units may or may not be subdivided into fee simple lots.
- 3. Accessory uses and structures shall be allowed pursuant to Charleston County ZLDR Article 6.5.3.
- 4. Special events for private lots and HOA areas shall be allowed pursuant Charleston County's ZLDR Article 6.7 and further defined in the HOA guidelines for Elms Glen.
- 5. Temporary uses and structures shall be allowed pursuant to Charleston County's ZLDR Article 6.6 and further defined in the HOA guidelines for Elms Glen.
- 6. Short term rental is allowed pursuant to Charleston County's ZLDR Article 6.8 under R-4 guidelines and further defined in the HOA guidelines for Elms Glen.
- 7. Utility uses in Elms Glen are allowed pursuant to Charleston County's ZLDR Table 6.1 under R-4 zoning.
- 8. See Section 21 of this document for additional information pertaining to non-residential uses.

Elms Glen								
Density/Inten	sity and Dime	ensional Stan	dards					
ZONING PRIOR	R-4	CN	<mark>UR</mark>	SINGLE	SINGLE	US Hwy. 78 E	Business Park	
TO PD APPROAL	Standards	Standards	Standards	FAMILY	FAMILY	(TMS # 388-00	88-00-00-223)	
ELMS GLEN	Prior to	Prior to	Prior to	ATTACHED	DETACHED	Commercial/	Industrial/	
LAND USES	PD	PD	PD	RESIDENTIAL	RESIDENTIAL	Office	Warehouse	
	Approval	Approval	Approval	(SFA)	(SFD)			
MAXIMUM	4	4	16	4 Units/Acre	4 Units/Acre	n/a	n/a	
ALLOWED	Units/Acre	Units/Acre	Units/Acre					
DENSITY								
MAXIMUM	-	-	-	8 units/Acre	8 units/Acre	n/a	n/a	
PROPOSED								
DENSITY								
MAXIMUM	-	-	-	16.76 Acres	21.95 Acres	5.45	Acres	
TOTAL								
ACREAGE								
MAXIMUM	44 D.U.	18 D.U.	-	134 D.U.	175 D.U.	n/a	n/a	
ALLOWABLE								
UNITS								
MINIMUM	5,000 sf	4,000 sf	-	1,000 sf	3.000 sf	10,000 sf	20,000 sf	
LOT AREA						,		
MINIMUM	50 feet	15 feet	12 feet	16 feet	40 feet	50 feet	16 feet	
LOT WIDTH								
MINIMUM								
SETBACKS*								
Along US				N/A	N/A	100 feet	100 feet	
Hwy. 78								
Front	20 feet	20 feet	15 feet	10 feet /	10 feet /	20 feet	20 feet	
				20 feet****	20 feet****			
Interior Side	5 feet	5 feet	0/5	5 feet	5 feet	10 feet	10 feet	
			feet***	(End units)				
Corner Lot	-	-	-	10 feet /	10 feet /	-	-	
Side				20 feet****	20 feet****			
Rear**	10 feet	10 feet	10 feet	10 feet /	10 feet /	20 feet	20 feet	
				20 feet***	20 feet****			
Accessory Str	uctures are a	llowed and su	bject to Char	leston County Z	LDR Section 6.5	.8	•	
MAXIMUM	30%	30%	50%	70%	50%	40%	60%	
BUILDING								
COVER								
MAXIMUM	35 feet	35 feet	4 stories /	4	3	35 feet	35 feet	
HEIGHT			Max. 50	stories/Max.	stories/Max.			
			feet	50 feet	40			
				feet****	feet****			

Notes:

- 1. See Exhibit C for which areas are residential and non-residential.
- * The following list represents allowable covered encroachments into setbacks at a maximum of 5 ft. in addition to encroachments allowed in ZLDR Sec. 4.2.3.A. The primary objective for these encroachments is to allow homes facing greenspaces to engage the area helping to create an engaged community feeling. These encroachments will not be allowed in any Right-of-way or easements.
 - Porches, balconies, and steps
 - Roof overhangs
 - Patios
 - Decks
- ** Rear setbacks of perimeter lots must match those of the adjacent zoning district. See Exhibit C in the appendix section of this document for adjacent zoning designations and their respective rear setbacks.
- *** Zero lot line homes may be built with no setbacks on one side of the property, but must have at least 10 feet of separation between buildings as per note 1 of Charleston County's ZLDR Table 4.14.3.
- **** 20-foot setback will apply to the side of the lot where it is accessed from (where the driveway is).
- ***** The height shall be either stories or feet whichever is less.

6. <u>Maximum Density:</u>

Density in Elms Glen will be calculated using high ground only. Freshwater wetlands and OCRM Critical Line acreages shall not count as high ground.

Maximum density allowed within Urban/Suburban Area Mixed Use area is eight (8) dwelling units per acre as per Charleston County ZLDR Section 4.25.5 – Development Standards.

There is a maximum proposed total of 309 residential lots (attached and detached) which is contingent upon providing 0.05 acres of open space per dwelling unit. Additional information regarding Open Space can be found in section 27. Common Open Space, of this document.

7. Affordable / Workforce Dwelling Units:

No affordable / workforce housing is proposed within this PD.

8. <u>Impact Assessment / Analysis:</u>

The proposed community will be designed to incorporate public road systems (complying with all processes and requirements for such offering). All lots within the community will have access from internal roads only. The amended PD's existing access point from U.S. Hwy 78 will remain and there will be another community access from Von Ohsen.

The water service will be provided by the Charleston Water Systems. The project will connect into the adjacent water mains and create a loop to maintain adequate pressure within the localized system. Elms Glen will work with CWS to ensure compliance.

The sewer service will be provided by the North Charleston Sewer District. The community will tie into existing adjacent gravity sewer mains for the most efficient utility layout. Elms Glen will work with NCSD to ensure compliance.

The PD shall comply with all current Charleston County Stormwater Ordinances and SCDHEC Regulatory requirements.

9. Traffic Impact Study:

A Traffic Impact Assessment (TIA) has been prepared by Kimley-Horn and is provided in the appendix section of this document. The traffic study was conducted in compliance with the Article 9.6 of the Charleston County ZLDR. The TIA has been reviewed and approved by SCDOT and recommends the following mitigation:

- -Left hand turn lane into the development from HWY 78.
- -Right hand turn lane into the development from HWY 78.

The recommended improvements are currently under permitting with SCDOT as part of a separate development.

10. <u>Development Schedule:</u>

Elms Glen will be developed in multiple phases.

11. Open Space:

The open space area shall be recorded with the Final Plat as per Article 8.5.2 of the Zoning and Land Development Ordinance, or separate instrument. Open space shall comply with regulations set forth in ZLDR Art. 4.25.6. The proposed location of the Common Open space is shown on the PD Open Space Exhibit enclosed within Appendix section of this document.

Additional information regarding Open Space can be found in section 27. Common Open Space, of this document.

12. Streets:

The proposed community is designed to have public rights-of-way, which will be offered to the County for acceptance into the public road systems (complying with all processes and requirements for such offering). All roads, alleys, driveways, and parking shall be to Charleston County standards. Roads and alleys will either be publicly dedicated pursuant to Charleston County's requirements and processes or dedicated to the HOA which shall maintain any roads not accepted into the public road system. Offstreet parking and driveways outside of the right-of-way shall be owned and maintained by an HOA.

13. Stormwater:

a. The planned development shall comply with all Charleston County Stormwater
Ordinances and South Carolina Department of Health and Environmental Control
(SCDHEC) Regulatory requirements. For site locations within sensitive drainage basins,
additional stormwater design and construction requirements may be required by the

Director of Public Works prior to Stormwater permit approval and issuance. Sensitive drainage basins may include but are not limited to areas which incur flooding conditions, are designated as Special Protection Areas, discharge to water bodies with restrictive Water Quality conditions, and/or are governed by other restrictive Water Quantity and Water Quality conditions. Where possible and allowed by permit, the proposed site may connect its stormwater system with existing conveyances. Best Management Practices (BMP's) shall be utilized, installed, and maintained in compliance with applicable approved permits throughout all phases including, but not limited to, site development, construction, and post construction.

- b. Applicant shall comply with Charleston County Stormwater Ordinances and SCDHEC Regulatory requirements for pre and post construction water quality and quantity. Stormwater design, construction, and maintenance shall be in compliance with applicable approved Charleston County Stormwater Permits. Comprehensive Master Drainage Plan must be provided for proposed site and incorporate all development phasing, future development, existing drainage systems and conveyances, and proposed drainage systems and conveyances. The Comprehensive Stormwater Master Plan shall also include discharge management plans for specialized activities within the development including but not limited to micro farming and urban agriculture activities. Utilization of approved and permitted Low Impact Design elements is encouraged within a comprehensive site Master Drainage Plan.
- c. The maintenance of all stormwater devices, structures, and facilities will be the responsibility of the Developer and/or Home Owner's Association. A Covenants for Permanent Maintenance of Stormwater Facilities shall be established by responsible party and recorded at the Registrar of Deeds office.
- d. The applicant shall coordinate with US Army Corps of Engineers (USACOE), South Carolina Department of Health and Environmental Control (SCDHEC), and Charleston County Public Works regarding any and all wetland areas.

14. Compliance with the ZLDR:

- a. With the exception of the Commercial/Industrial area, all items not specifically addressed pertaining to Single Family Attached lots will follow current ZLDR Ar. 4.14 UR development standards and all items pertaining to Single Family Detached lots will follow current ZLDR Ar. 4.12 R-4 development standards. The UR development standards shall not apply to the existing 5.45-acre Commercial/Industrial area located on parcel ID no. 388-00-00-223 and labeled as the 'EquipmentShare' property on Exhibit A of this PD. The Commercial/Industrial area will continue to conform to the use and development standards as outlined in the US Highway 78 Business Park, case no. PD-70.
- b. The owner/developer shall proceed with proposed development in accordance with the provisions of The Charleston County zoning regulations, applicable provisions of the Charleston County Comprehensive Plan, and with such conditions as may be attached to any zoning to the applicable PD district.
- c. The provisions of Article 4.25.10, Variance, of Charleston County Ordinance shall apply to the Planned Development, including those for major and minor modifications. Tree variances may be granted in accordance with this Article and all other sections of this Ordinance.

- d. The proposed development complies with the approval criteria contained in Section 4.25.8.J as stated below:
 - "The PD Development Plan complies with the standards contained in this Article."

The Planned Development complies with the standards set in the Article 4 of the ZLDR.

• "The development is consistent with the intent of the Comprehensive Plan and other adopted policy documents."

The proposed development is consistent with intent of the Charleston County Comprehensive Plan and other adopted policy documents through preservation of natural resources, such as large trees and associated buffers, and provision for the expansion and growth of Charleston County in areas specifically designated such as this area.

 "The County and other agencies will be able to provide necessary public services, facilities, and programs to serve the Development proposed, at the time the property is developed."

Charleston County and other agenesis will be able to provide necessary public services, facilities, and programs to serve the proposed development at the time the property is developed. The confirming letters of coordination are enclosed within Appendix section of this document.

15. Historic and Archeological Survey:

The site does not contain any historical or architectural sites or structures. The GIS map of the site from the South Carolina Historic Preservation is enclosed within Appendix section of this document.

There are a number of historic structures within the area surrounding the site. However, these are not directly connected to the site and due to the proximity to the site, the site development will not adversely affect the historical structures.

16. <u>Letters of Coordination:</u>

Letters of coordination from all agencies for which the development will be obtaining permits, services and/or facilities are included in the appendix of this document.

17. <u>Dimensional Standards:</u>

See Section 5 of this document for dimensional standards table. There are no waterfront lots within Elms Glen.

18. Architectural Guidelines:

The Architectural Guidelines of ZLDR Article 9.5 shall apply to this PD.

19. Lots to Abut Common Open Space:

The proposed development was designed to ensure maximum residential accessibility to HOA Common Open Space. Most of the lots are immediately adjacent to the open space, where the lots are not adjacent to the open space, the maximum distance to the open space is approximately 150'. Access to the open space is provided through either street or walkway in a minimum 20' easement. See attached plan exhibits.

20. Access:

- a. The master plan proposes a connection point for adjacent streets that are able to handle additional capacity.
- b. Where drainage pond or utility maintenance is needed an easement to allow service access will be provided between any structures or on private land.
- c. The primary access to the Commercial/Industrial land use will be internal from the existing driveway off US Highway 78.

21. Commercial Areas and Industrial Areas:

The primary business park land uses noted are office warehouse, warehouse distribution, and compatible trade service uses of a non-nuisance nature, which include but are not limited to Commercial/Industrial uses, machinery and equipment rental, constructions tools and equipment rental, heavy duty truck or commercial vehicle rental or leasing, and other comparable commercial and industrial uses as outlined in the US Highway 78 business park case no. PD-70. The Commercial/Industrial areas will utilize any applicable uses under the communication, utilities, transportation, trade, services, culture, entertainment, and recreation categories, except for sewage treatment plants, waste disposal facilities, chemical operations, junk or salvage yards, airports/airstrips, logging camps, sawmills, sexually oriented businesses, and outdoor gun ranges. The 5.45-acre tract at the front will be committed to more of an emphasis on business and trade services. Due to the US Highway 78 visibility and accessibility, the Commercial/Industrial areas can utilize part of this tract for office or commercial retail uses. Access to the Commercial/Industrial use will be provided from Highway 78 thorough the existing access road. The Commercial/Industrial area will be directly connected through the community's sidewalks, trails, and infrastructure system. Notwithstanding any provisions within this PD, the permitted land uses and development standards applicable to the 5.45-acre Commercial/Industrial property shall remain unchanged and shall continue to conform with the approvals set forth in the US Highway 78 business park, case no. PD-70.

22. Areas Designated for Future Use:

All areas designated for future improvements or not intended for immediate improvement or development shall remain in a natural state until such time as development permits are approved. Roads and associated utility infrastructure may be completed at any time during the development process with the appropriate permits from those authorities having jurisdiction.

23. **Signs:**

One multi-tenant sign will be allowed at the entrance at US Hwy. 78, as shown on the plans. Interior lot signage will adhere to guidelines set forth in the Charleston County Zoning Ordinance Article 9.8 Signs.

One residential monument sign will be allowed at the entrance at Von Oshen Road and shall be located as shown on the plans. All residential neighborhood signs must be on premises, off-premise signs shall not be allowed.

All signage shall be minimal and unobtrusive in scale, color, and material, and will comply with the requirements of the ZLDR Article 9.8, Signs.

The Commercial/Industrial land use area may utilize façade signage as defined in the current ZLDR Section 9.8.5 – Wall/Façade Signs.

24. Parking:

The Parking Guidelines of ZLDR Article 9.3 shall apply to this PD.

25. Tree Protection:

The Planned Development shall comply with all provisions of Article 9.2 Tree Protection and Preservation, of the ZLDR.

26. Resource Areas:

The proposed development shall protect natural resources such as mature trees, and buffer areas. The proposed development will meet the standards and guidelines set forth in ZLDR Article 9.2, Tree Protection and Preservation and other relevant policies set to protect natural resources.

The site does not contain any agricultural soils and/or active farmland, water access or shoreline buffers, or habitat of species designated as of federal, state, and local concern. There are no scenic views within or toward the site.

Large areas of open space will be located on site to preserve as many of protected trees as possible.

27. Common Open Space:

The open space shall be planned and design as per Section 4.25.6 Common Open Space of the Zoning and Land Development Ordinance. Common Open Space will be offering passive and active areas to allow for use by all demographics within the development and encourage outdoor activities to promote healthy community.

The open space for this development is designed as a chain of large parks, linear parks and trails that tie all the development together and offer a number of outdoor activities. It will consist of ponds, drainage ditches, and HOA green spaces, including an amenity area. It will provide sufficient area for quality time outdoors without need for leaving neighborhood. Additionally, linear parks will provide visual separation and neighborhood congregation to the rear loaded lots. See the Open Space Exhibit within the Appendix of this document.

The following are approved Common Open Space uses within Elms Glen:

- Recreational Structures
- Swimming Pool
- Playground
- Walking / Biking Paths and Boardwalks
- Community Gardens
- Landscaped Areas
- Recreational Sports Facilities
- Picnic and Outdoor Eating Areas
- Dog Park
- Fishing Docks / Piers
- Other uses as specified in Charleston County's ZLDR Section 4.25.6.

Common Open Space – Minimum Requirement				
Proposed Residential Lots	290 D.U.			
0.05 Acres of Open Space	0.05 Ac. x 290 = 14.5			
required per dwelling unit +	5.45 x 10% = 0.545			
10% of nonresidential	14.5 + 0.545 = 15.05 Acres Minimum of Open Space Required*			
acreage				

^{*}Only 30% of the open space can be a combined acreage of the freshwater wetlands, detention ponds, and buffer areas. This calculation shall apply to the total acreage of open space including both nonresidential and residential areas.

The land designated as common open spaces shall not be occupied by streets, drives, parking areas or structures, other than recreational structures. Plantings in open space shall be planted to create visual barrier between properties and together with street frontage, wetland buffers and streetscape create pleasant landscape throughout the site.

All property owners in the PD shall have access to the open space by means of a public or private street or walkway within a 20' min. easement. A sufficient amount of common open space shall be provided within each phase of the PD development, in order to serve the expected population of that phase.

The common open space area shall be recorded with the Final Plat as per Article 8.5 of the Zoning and Land Development Ordinance, or separate instrument. Open space shall be conveyed prior to recording of final Plat, in accordance with one of methods listed in Section 4.25.6.C.2 of Zoning and Land Development Regulations.

Common open space will be owned and maintained by the HOA and shall comply with ZLDR Article 4.25.6. The location of the Common Open space is shown on the PD Open Space Exhibit and PD Concept Plan enclosed within Appendix section of this document.

28. Landscape and Buffer Requirements:

All landscape buffering shall follow the Charleston County standards unless otherwise noted. Refer to Section 9.4.4 of Zoning and Land Development Regulations.

Landscape Buffers			
US Hwy 78 Right-of-way	20' vegetated Type 'C' Buffer from the right-of-way into the property		
Von Oshen Road	20' vegetated Type 'C' Buffer from the right-of-way into the property		
Residential against	40' vegetated Type 'F' Buffer from the shared property line into the		
Commercial/Industrial land	Commercial/Industrial land use*		
use			
Commercial/Industrial	10' Type 'A' Buffer from the right-of-way into the land use**		
against an interior right-of-			
way			
Perimeter	10' Type 'A' Buffer from the property line into the site		

^{*}The buffer and screening plantings shall be provided within residential land use and properly maintained at all times by the HOA.

Parking lot interior landscaping for Commercial / Industrial shall comply with Section 9.4.3.B. of Zoning and Land Development Regulations.

Townhomes within Elms Glen shall not need to buffer along newly created or existing internal access easements/rights-of-way.

Tree Protection shall be per Charleston County Standards.

29. Home Owner's Association (HOA)

A Homeowner's Association (HOA) Board of Directors will be created to own, manage, and maintain the residential roads and sidewalks, the drainage system and common open space. The HOA will be managed by the developer collecting all fees and handling HOA responsibilities until all lots within the residential development are sold, at which time duties will be turned over to a successor chosen by the HOA.

The HOA will be responsible for taking ownership and maintaining all common areas, parks, ponds, associated furnishings, pathways, and improvements. They will also fund any private lighting repairs, landscaping, and buffers maintenance.

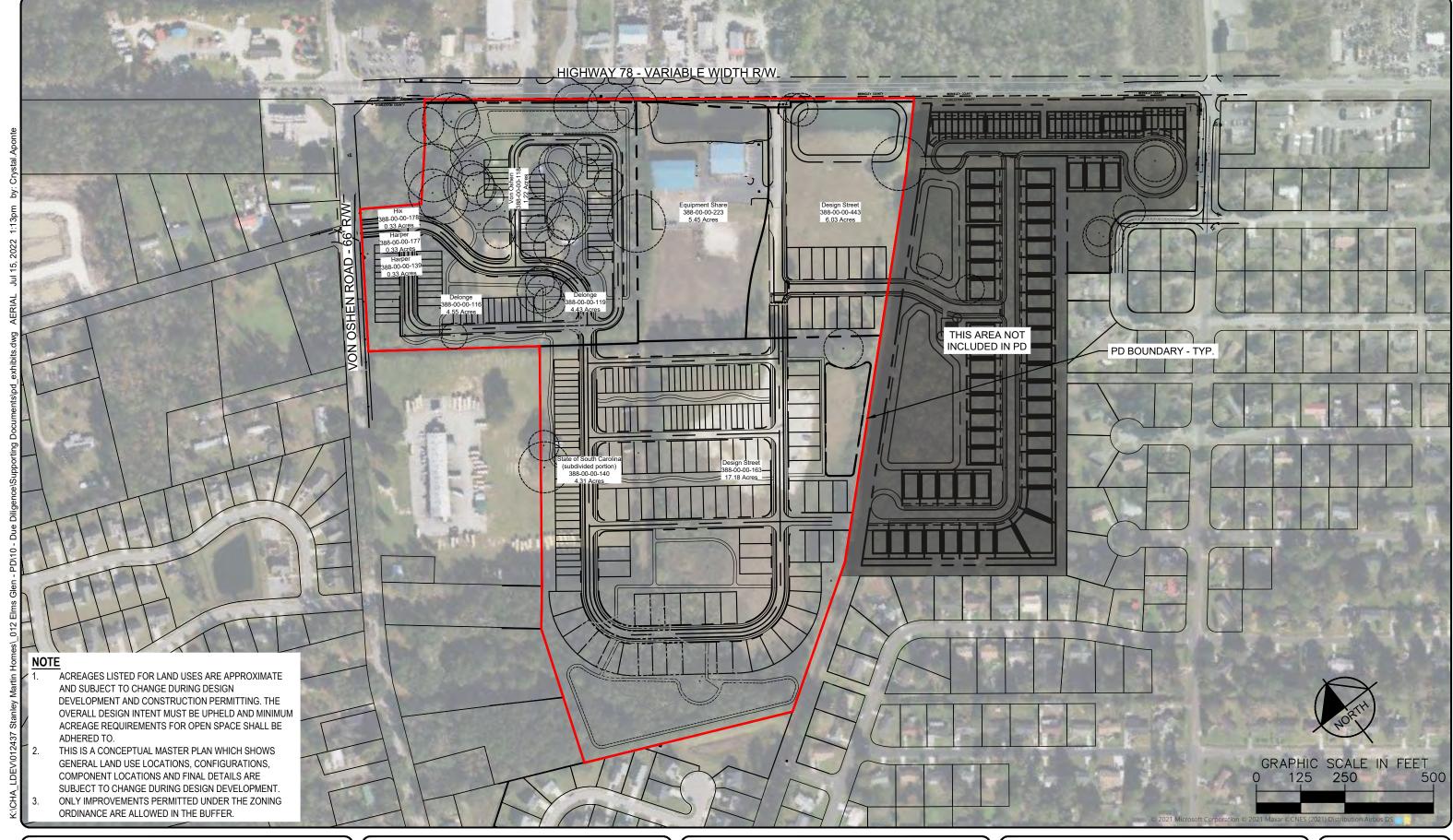
The HOA shall fund, own, operate, and maintain the stormwater system components and structures ensuring the system operates to permitted standards. Any modification to permitted ponds will require Comprehensive Master Stormwater Plan (Stormwater Master Plan) revision, review, and approval by applicable jurisdictional and permitting agencies. The maintenance of all stormwater devices, structures, and facilities will be the responsibility of the Developer and/or Home Owner's

^{**}All buffers between the right-of-way line and Commercial/Industrial land use within PD shall be landscaped with trees and plantings except where access drive cuts through.

Elms Glen PD

Association. A Covenants for Permanent Maintenance of Stormwater Facilities shall be established by responsible party and recorded at the Registrar of Deeds office.

The HOA will own/maintain any streets, alleys that are not accepted by Charleston County into the public road system.


The HOA will own/maintain any areas that are not accepted by Charleston County.

HOA approval is not required prior to submittal of applications for zoning permits.

The Commercial/Industrial part of PD will be maintained and manage by business owner in collaboration with HOA on land used in share manner.

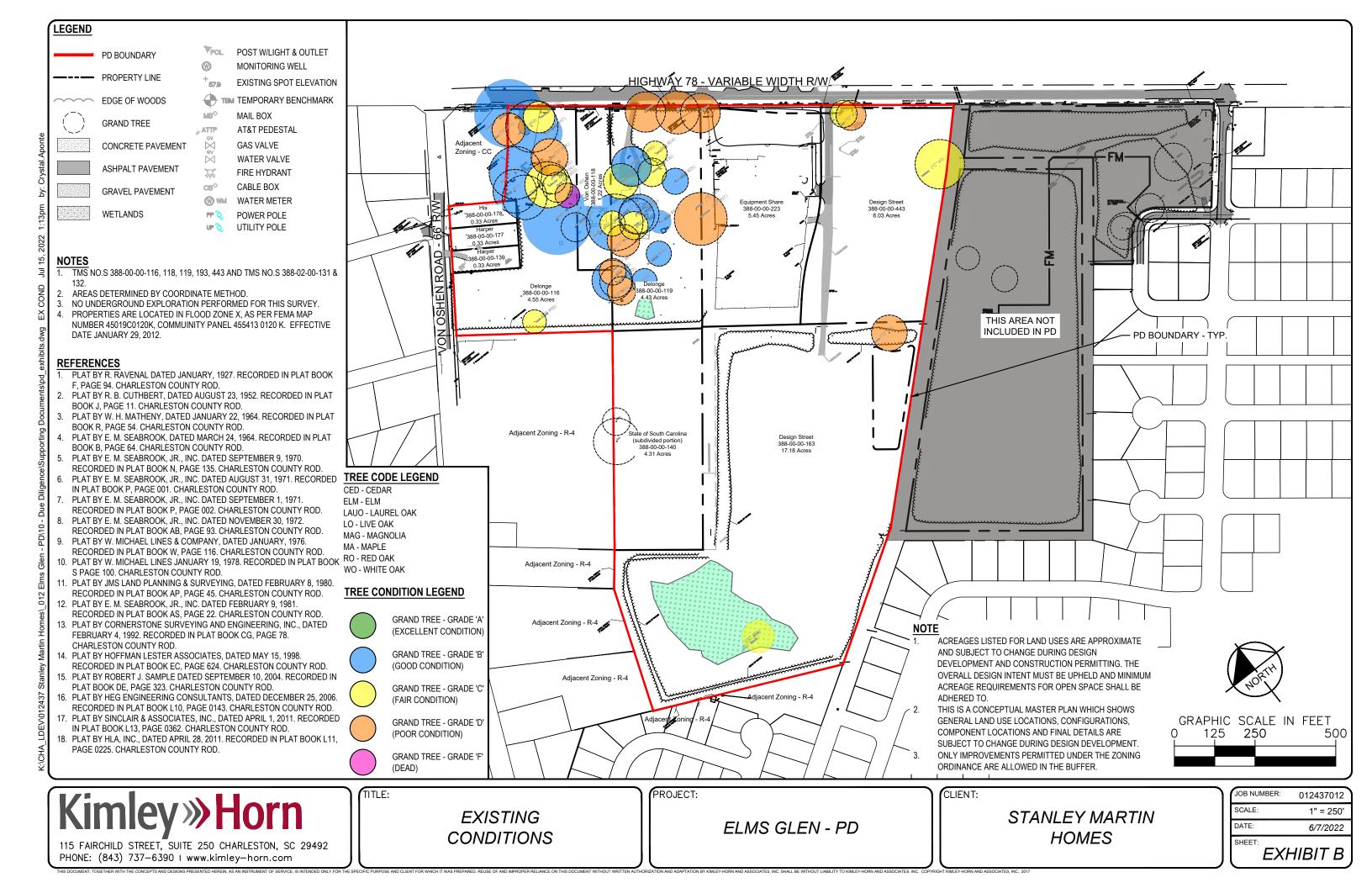
30. Appendix Items

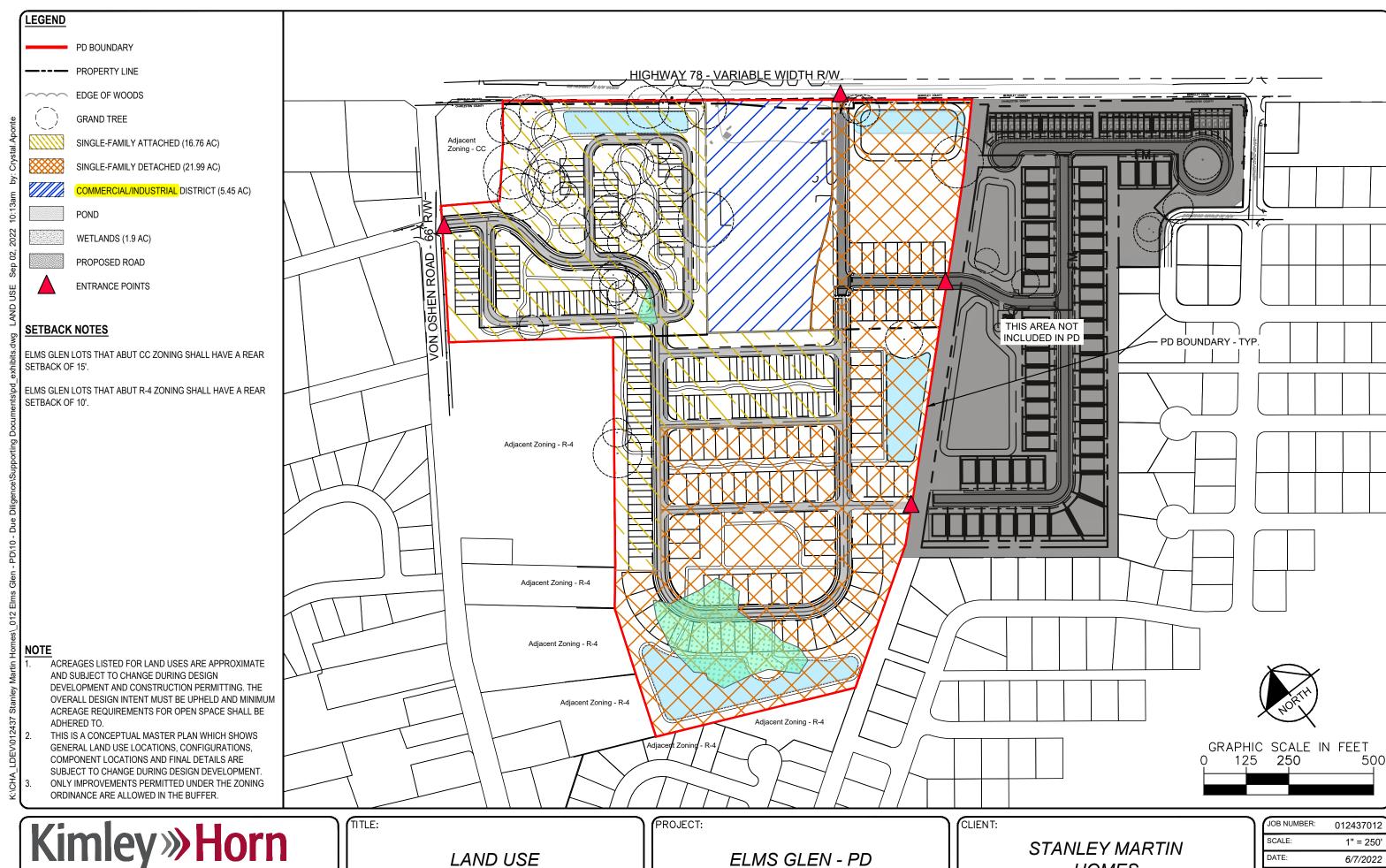
- Exhibit A Aerial and Site Layout
- Exhibit B Existing Conditions
- Exhibit C Land Use
- Exhibit D Open Space
- Exhibit E Road Layout
- Exhibit F Utilities
- Exhibit G Signage
- Architectural Elevations
- Original PD-70 Document
- Traffic Impact Study
- SCDAH / SCIAA Arch Site Map
- SCDOT Letter of Coordination
- School District Letter of Coordination Charleston County School District
- Water Service Letter of Coordination Charleston Water System
- Sewer Service Letter of Coordination North Charleston Sewer District
- Electricity Service Letter of Coordination Dominion Energy
- United States Postal Service (USPS) Letter of Coordination
- Fire District Letter of Coordination C & B Fire Department
- Charleston County Public Works Letter of Coordination
- CARTA Letter of Coordination
- Community Workshop Notice

115 FAIRCHILD STREET, SUITE 250 CHARLESTON, SC 29492 PHONE: (843) 737-6390 I www.kimley-horn.com

TITLE:

AERIAL AND SITE LAYOUT


PROJECT:


ELMS GLEN - PD

CLIENT:

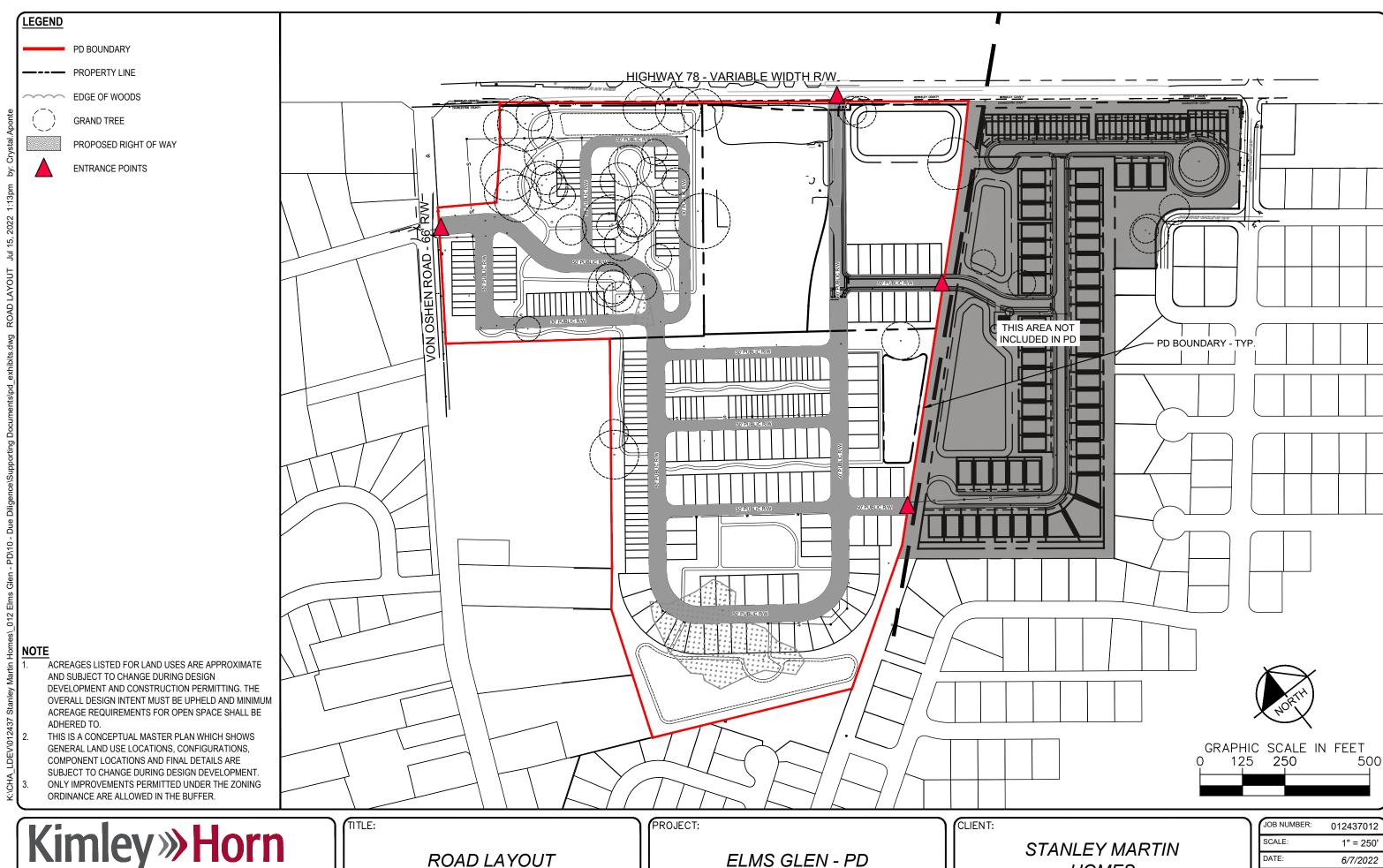
STANLEY MARTIN HOMES

	SHEET: EX	HIBIT A
	DATE:	6/7/2022
	SCALE:	1" = 250'
1	JOB NUMBER:	012437012
	-	

115 FAIRCHILD STREET, SUITE 250 CHARLESTON, SC 29492 PHONE: (843) 737-6390 I www.kimley-horn.com

HOMES

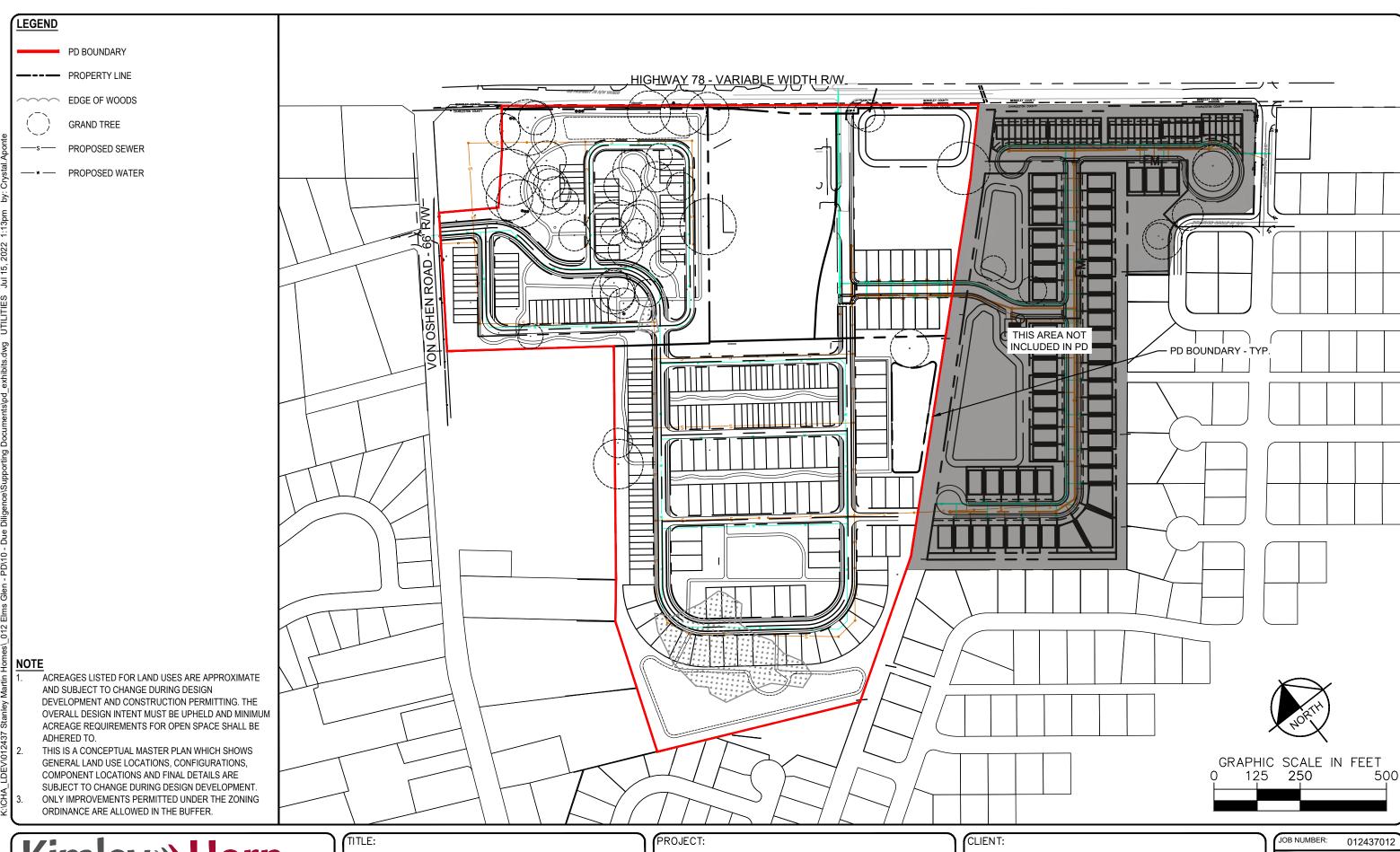
012437012 1" = 250' 6/7/2022 EXHIBIT C


115 FAIRCHILD STREET, SUITE 250 CHARLESTON, SC 29492 PHONE: (843) 737-6390 I www.kimley-horn.com

OPEN SPACE

ELMS GLEN - PD

STANLEY MARTIN **HOMES**


DATE: 6/7/2022 EXHIBIT D

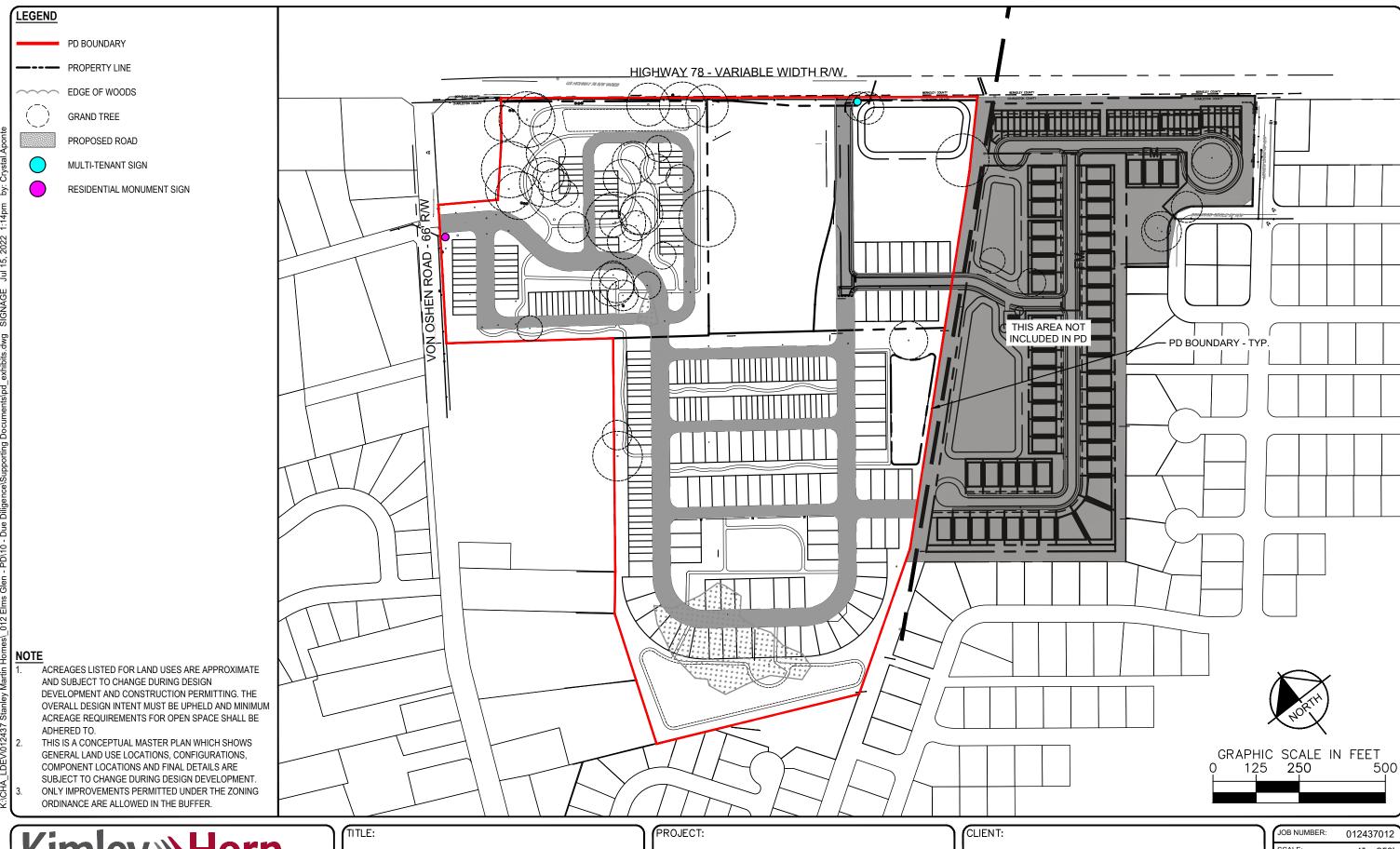
115 FAIRCHILD STREET, SUITE 250 CHARLESTON, SC 29492 PHONE: (843) 737-6390 I www.kimley-horn.com

HOMES

012437012 1" = 250' 6/7/2022 EXHIBIT E

115 FAIRCHILD STREET, SUITE 250 CHARLESTON, SC 29492 PHONE: (843) 737-6390 I www.kimley-horn.com

UTILITIES


ELMS GLEN - PD

STANLEY MARTIN HOMES JOB NUMBER: 012437012

SCALE: 1" = 250'

DATE: 6/7/2022

SHEET: EXHIBIT F

Kimley Horn

115 FAIRCHILD STREET, SUITE 250 CHARLESTON, SC 29492
PHONE: (843) 737–6390 I www.kimley—horn.com

SIGNAGE

ELMS GLEN - PD

STANLEY MARTIN HOMES

EXHIBIT G				
DATE:	6/7/2022			
SCALE:	1" = 250'			
JOB NUMBER:	012437012			

Detached Single-Family

Attached Single-Family

Architectural Elevations

CHARLESTON COUNTY COUNCIL

O.T. WALLACE COUNTY OFFICE BUILDING

2 COURTHOUSE SQUARE CHARLESTON, SOUTH CAROLINA 20401

Barrett S. Lawrimore Chairman

Beverly T. Craven Clerk

2845-C

US HIGHWAY 78 BUSINESS PARK PLANNED DEVELOPMENT (PD-70)

The following items, when combined with the Development Guidelines will govern the zoning requirements for the US Highway 78 Business Park Planned Development designated as PD-70

- The project to be called the US Highway 78 Business Park Planned Development is being proposed to develop the site as a business park 1 over an approximate 10 year period.
- All roads and drainage systems will be public and will be constructed to County standards in accordance with the Charleston County Road Code. 2.
- Wetland areas cannot be filled without obtaining permits from appropriate 3. governmental authorities.
- If the granting of permits by other governmental entities requires the redesign of this property, an amendment to this Planned Development will 4. be required.
- Utilities and services shall be provided in accordance with the Development Guidelines for the US Highway 78 Business Park Planned 5. Development. Conditional Use Permits for same shall not be required.
- Building setback lines, number of off-street parking spaces, lot areas and widths, and building heights shall be as stated in the Development 6. Guidelines for the US Highway 78 Business Park Planned Development.

Page Two

- 7. The Charleston County Zoning Ordinance shall apply to all areas of this Planned Development where not covered by these Regulations and Guidelines.
- 8. Property owners agreements, deed restrictions, and covenants shall be submitted to the County Attorney (copy to Subdivision Administrator) for their review and approval prior to conditional or final plat submittal whichever comes first) prior to consideration by the Planning Board. Thereafter, copies of these restrictions, covenants, and agreements must be recorded in the Register of Deeds (ROD) Office for Charleston County prior to occupancy.
- A deceleration lane on US Highway 78 as required by County Planning Department and permitted by SC DOT shall be provided.

10. This agreement shall become effective January 20, 1999.

BARRETT LAWRIMORE, CHAIRMAN CHARLESTON COUNTY COUNCIL

BEVERLY T. CRAVEN, CLERK
CHARLESTON COUNTY COUNCIL

DATE ADOPTED

LAND PLANNING • CIVIL ENGINEERING • LANDSCAPE ARCHITECTURE WETLAND CONSULTING • LAND SURVEYING

US HIGHWAY 78 BUSINESS PARK

PLANNED DEVELOPMENT DISTRICT GUIDELINES

AUGUST 1998

REVISED OCTOBER 20, 1998

US HIGHWAY 78 BUSINESS PARK PLANNED DEVELOPMENT GUIDELINES

August 24, 1998 Revised October 20, 1998

I. PURPOSE, INTENT AND OBJECTIVES

The following guidelines have been created to direct the proposed Planned Development of 28.67 acres along the west side of US Highway 78 in Charleston County (TMS #388-00-00-163). This parcel is to be developed as a business park over a 10 year period.

The area was noted for these uses through an economic development study conducted by HLA for the county in 1995. HLA have performed research, surveying and site design to enable preparation of a preliminary site plan in conjunction with these Planned Development District Guidelines.

II. EXISTING SITE INFORMATION

Existing Owner -

Ms. Norma C. Hall

c/o The Bill Hall Company

4940 Dorchester Road

North Charleston, SC 29418

- Existing zoning AR
- Site Soils

Portsmouth (Po), Hockley (Ho), Rains (Ra), Rutledge (Rg), Quitman (Qu), Wargram

- Water A 24" CPW water main exists along US Hwy. 78 and will be extended into the site.
- Sewer An 8" gravity main in US Hwy. 78 will be utilized after a gravity sewer main, pump station and force main system are installed on the site.
- Property is located in Flood Zone L as per Community Panel No. 4554130080F dated April 17, 1987.
- Existing topography is mildly sloped toward US Highway 78 with elevations ranging from 51-58. Existing drainage basins and site ditches define some of the existing drainage pattern.

III. LAND USE/SITE DEVELOPMENT CONCEPT

The attached preliminary site plan indicates a primary access road that will provide access throughout the park. Water and sewer mains will be extended along the primary road infrastructure. A pump station will be located on the site. The final size and configuration of the noted lots will be market driven, therefore we request flexibility as to final tract sizes.

The primary business park land uses noted are office warehouse, warehouse distribution, and compatible trade service uses of a non-nuisance nature. We request the right to utilize any applicable uses under the communication, utilities, transportation, trade, services, culture,

HLA, INC.

entertainment and recreation categories, except for sewage treatment plants, waste disposal facilities, chemical operations, junk or salvage yards, airports/airstrips, logging camps, sawmills, sexually oriented businesses and outdoor gun ranges. The 11 acre tract at the front will be committed to more of an emphasis on business and trade services. Because of the US Highway 78 visibility and accessibility we request the flexibility to utilize part of this tract for office or commercial retail uses. We are promoting the acceptability of this option by requiring nonmetal/bare block facade to the buildings facing Highway 78 and improvement of the ponds as aesthetic water features. We also recommend landscape requirements that would enhance, not block, views. A signature entrance area with multi-tenant ground signage is intended with lighted aerator fountains. We also have coordinated appropriate buffers for the rest of the adjacent offsite uses which include bus parking yards, filled sewage treatment lagoons, major drainage easements and a few homes. Please review the following guidelines for more information.

SETBACK/LOT/HEIGHT/COVERAGE CRITERIA IV.

A. The entire property shall comply with setback requirements as set forth in the Charleston County Zoning Ordinance except where noted. All buildings within the development shall fall within the following setbacks:

- B. Building heights shall meet the county requirements (35' maximum).
- C. Maximum building coverage will be 40% for commercial retail and office uses and up to 60% for warehouse or light industrial uses.
- D. Minimum lot width of 50' for office or commercial retail uses and 100' for warehouse or light industrial uses. Minimum lot size of 10,000 SF for office or commercial retail uses and 20,000 SF for warehouse or light industrial uses.

OFF STREET PARKING V.

A. Parking Required

Commercial Retail: 1 space/200sq. ft.

Office: 1 space/300sq. ft.

Storage, Warehouse, Distribution: 1 space/2 employees

All other parking will meet requirements of the Charleston County Zoning Code.

B. Parking lots shall not have more than 10 consecutive parking spaces without a landscape island.

SCREENING AREAS/LANDSCAPE REQUIREMENTS VI.

- A. All landscape buffering shall follow the Charleston County standards unless other wise
- B. Perimeter landscape buffers shall be predominantly 20'. Some areas of 10' buffers are indicated on the preliminary site plan. In areas where utility or drainage easements

exist next to property lines, a 10' planting strip shall occur adjacent to the property line pending county approval. Planting requirements shall match county requirements for 20' and 10' buffers respectively. There will be a 10' landscape buffer against the proposed internal roadway with a requirement for an evergreen hedge and canopy trees every 40'.

C. There will be a 5' buffer along internal property lines with an evergreen buffer hedge requirement along subdivided tracts in the rear portion of the site unless 2 lots share

joint circulation.

D. Interior Landscaping: In parking areas, there shall be one (1) canopy tree planted per 10 parking spaces.

E. Tree Protection shall be per Charleston County Standards.

VII.

A. One multi-tenant sign will be allowed at the entrance at US Hwy. 78, as shown on the plans. Interior lot signage will adhere to guidelines set forth in the Charleston County Zoning Ordinance Section 30.80.0631. Sec Attached were a signasse

STREET/STORM DRAINAGE

- A. There shall be one (1) curb cut along US Hwy. 78, located as shown on the site plan.
- B. Paving of entry drive, parking and interior drives shall be to Charleston County
- C. Storm drainage must be approved by the Charleston County Public Works Department and constructed to exceed their specifications. Water runoff from buildings, drives and parking areas shall be directed to meet the necessary agency approvals. The existing drainage basins at US Highway 78 and the drainage ditches throughout the site will be utilized as part of a drainage improvement system that will manage and treat stormwater runoff. Each individual lot or parcel developed is required to provide for its own stormwater detention/retention facility and comply with Charleston County Public Works and DHEC-OCRM stormwater requirements.

Office of Ocean and Coastal Resource Management

1362 McMillan Avenue, Suite 400 Charleston, SC 29405

(843) 744-5838 FAX (843) 744-5847

September 8, 1998

Mr. John Lester HLA, Inc. 29 Leinbach Drive, Bldg, A-2 Charleston, SC 29407-6988

Rc:

McLaura Bluff and Highway 78 Business Park Charleston County Proof of Coordination

Dear Mr. Lester:

The above referenced project will need several permits and certifications from DHEC-OCRM. However, the submitted plan appears amendable to the existing DHEC-OCRM regulatory constraints. If the site contains wetlands, a wetland delineation may be required. Also, DHEC-OCRM must issue a Stormwater Management and Sediment Control permit prior to any land disturbing activity on the site.

I am available to review more detailed plans of the project as it progresses. Presently, it appears you are aware of the various requirements relating to DHEC-OCRM approval of the project.

Sincerely,

Joseph Fersner, P. E.

Manager, Engineering and State Certification

bare 1 ever for

BN/POC/jk

cc:

Mr. Christopher L. Brooks

Mr. H. Stephen Snyder

South Carolina
Department of Transportation

6355 Fain Street, Building C North Charleston, SC 29406

August 31, 1998

Mr. John Lester, PE, RLS HLA, Inc. 29 Leinbach Drive, Bldg. A-2 Charleston, SC 29406-4989

Re:

Proof of Coordination for McLaura Bluff Community (SC-61) and Business Park

(US 78)

Dear Mr. Lester:

We have reviewed the preliminary plans for the McLaura Bluff Community development and concur with the placement of the subdivision entrance. Turn lanes will not be required for this development. When more detailed plans showing entrance and drainage details are available, we will be glad to review for permitting. Please design the entrance roadway to minimize stormwater runoff to the right-of-way and provide complete drainage analysis and summary with the encroachment permit application.

We have also reviewed plans for Business Park on US 78. It appears the entrance has been placed in accordance to SCDOT spacing standards. However, turn lanes may be required for this development. This issue as well as drainage will need to be thoroughly reviewed by the appropriate permitting office before encroachment permits can be released. If you have any questions, please call Brad Morrison or myself at 740-1655.

Sincerely,

Kirk M. Edmonds, P.E.

Resident Maintenance Engineer

Charleston County

cc:

Brad Morrison, CEII

KME/bsm

To: Doug Rucker

Fax: 571-7599

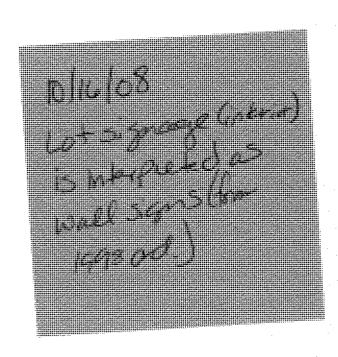
From: Andrea Pietras

Date: 10/16/08

Phone: 843-202-7200

Fax: 843-202-7212

Message:


Attachment includes:

Page from approved Planned Development guidelines regarding signs, which allows for 1 multi-tenant sign at the entrance at US Hwy 78 and interior lot signage (wall signs); and

The 1998 Zoning Ordinance sign section with the applicable wall signage

sections that apply.

Please let me know if you have any questions. If you'd like to discuss an amendment to this approved planned development, please contact our front desk at 202-7200 and ask for a rezoning pre-application conference.

Sec. 30.80.0631. Signs

This section provides comprehensive regulations for signage in Charleston County designed to promote public safety and welfare by reducing visual clutter along highways, facilitating the efficient transfer of information, and thus enhancing both traffic flow and the ability to locate needed goods and services.

General Provisions

A. Administration and Enforcement

- 1. <u>Non-Commercial Copy</u> Any sign authorized in this section is allowed to contain noncommercial copy in lieu of any other copy. Noncommercial on-premise signs are permitted in any zoning district provided that such signs comply with the regulations of that district.
 - Standards All permanent signs must meet the structural and installation standards of the Standard Building Code and electrical standards of the National Electrical Code as enforced by the Charleston County Building Inspection Services Department.
 - Permit required No signs, except real estate signs shall be erected in Charleston County unless a sign permit has been granted by the Zoning Administrator and the required fee has been paid.
 - Fees An applicant for a sign permit shall pay such fees as determined necessary for application processing. These fees are due upon submission of an application and shall be determined by County Council.
 - 5. Permits A permanent tag shall be attached to every installed sign. The tag shall remain the property of Charleston County and shall not be removed without the Zoning Administrator's approval.
 - Documentation of Signs Upon request, the owner of any existing sign shall provide the Charleston County Zoning Administrator with evidence which documents the size, location and date of construction of existing signs.
 - 7. <u>Appeals</u> Appeals for variances from the provisions of this section may be filed in accordance with the provisions of Section 96.60.10.

B. Prohibited Signs

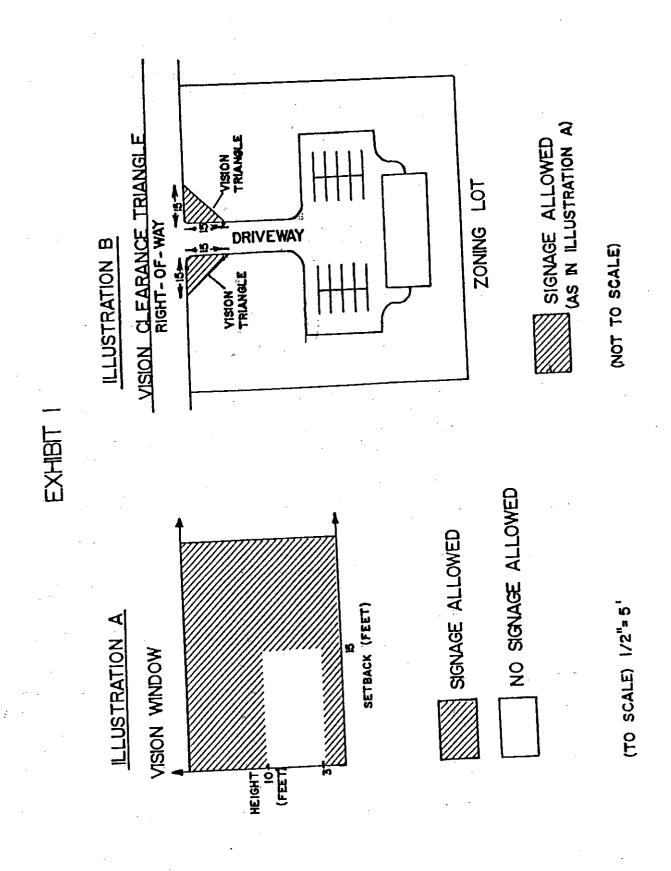
- 1. Flashing Sign
- 2. Pennants, Streamers, and other Moving Devices
- 3. Signs Imitating Traffic Devices (Signal)

- 4. Signs Imitating Traffic Signs
- 5. Signs in Marshes
- 6. Signs in Right-of-Way
- 7. Snipe Signs
- 8. Vehicle Sign

C. House Numbers

All permanent free-standing On-Premise signs shall contain house numbers in four (4) inch numbers. This area shall not be included in the calculation of maximum sign area.

D. Illumination


- No sign advertising a home occupation shall be illuminated.
- All lighted On-Premise signs shall be placed no less than one hundred (l00') from property in an AR or R zoning district.
- Indirectly illuminated Off-Premise Signs shall be placed no less than two-hundred (200) feet from property in an AR or R District.
- 4. Directly illuminated Off-Premise Signs shall be placed no less than four-hundred (400) feet from property in an AR or R District.

E. Signs In Disrepair

Signs in disrepair shall be repaired, renovated, or removed from the premises within sixty (60) days following notice by Zoning Administrator.

F. Signs Interfering with Vehicular Vision

- a. In the area near the entrance of a driveway, no sign shall obscure the travel vision from three (3) to ten (10) feet above ground level in triangular areas formed by measuring from the point of intersection of any front lot line and driveway, a distance of fifteen (15) feet along the front lot line and driveway and connecting the points to form a triangle. (See Exhibit A).
- b. No sign or structure shall be erected so as to interfere with the vision of vehicles operated along any highway, street, road or driveway, or at any intersection of any street, highway or road with a railroad track. Signs determined by the Zoning Administrator to be in violation shall be removed or relocated immediately upon notice.

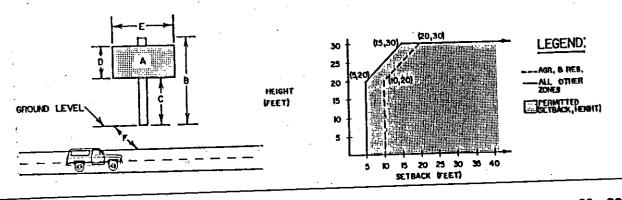
c. Where minimum setback and height requirements listed elsewhere in this section conflict with the vision clearance standards above, the more restrictive of the two shall apply.

II. On-Premise Signs

A. Free Standing Signs

- Maximum size, height, width, length, number of sign faces, number of signs per establishment and required minimum height and setbacks are based upon establishment size and shall conform with Table A.
- Readerboards must be attached to permanent free-standing signs and shall be authorized under the following conditions:
 - One (1) readerboard per zoning lot for single or multi-tenant structures containing office, commercial, or industrial uses;
 - five (5) square feet of readerboard may be provided for each separate business located in a multi-tenant structure;
 - total readerboard square footage shall not exceed one hundred (100) square feet;
 - freestanding signs utilizing readerboards shall not exceed a maximum of two hundred and fifty (250) square feet in area.

B. Wall/Facade Signs



- Two (2) signs shall be allowed per wall or facade but no more than four
 (4) per establishment. Total area of all signs shall not exceed square footage allowed in Table B.
- Maximum size of wall/facade signs is dependent upon building frontage and setback and shall conform with Table B.

TABLE A
FREE STANDING ON-PREMISE SIGNS

	FREE STANDI		
	ZONING D	ISTRICT	
REQUIREMENT	AGRICULTURAL	RESIDENTIAL	OTHER
A Max. Size (sq. ft.)	10 32* *with c.u.p	Home Occupation: 4 sq. ft. All others: 10 sq. ft.	Gross Bldg. Size 50 s.f. 2,500 - 25,000 = 100 s.f. 25,000 - 100,000 = 150 s.f. 100,000+ = 200 s.f.
B Max. Height (ft.)	14	5	20 with minimum setback. Up to 30 with additional setback (Sliding Scale: see below)
C Min. Height	None	None	None
D Max. Width (Height of sign with face)	N/A	5	Ratio – longest side: shortest side 5:1
E Max. Length (ft.)	N/A	5	Ratio longest side: shortest side 5:1
F Setback(s) (Front/Interior (ft.)	10/10	10/10	5/10
# Maximum Sign Faces	2 per sign	2 per sign	2 per sign
# of Signs Per Business	1 per frontage	1 per frontage	1 sign per 1000 ft/frontage Maximum: 3 per project Minimum: 1 per project

FREESTANDING SIGNS

TABLE B

Wall/Facade Signs

Building Length Facing Street*	Setback**	Maximum Size (sq. ft.)
Building frontage of 50 ft. or less	0 - 99 ft. 100 - 399 ft. 400 or more ft.	50 100 150

Building Length Facing Street*	Setback**	Maximum Size* (sq. ft.)
Building frontage of more than 50 ft.	0 - 99 ft. 100 - 399 ft. 400 or more ft.	Bldg. Frontage x 1 15% Bldg. Frontage x 2 OR of Bldg. Frontage x 3 facade

^{*}Use smaller of two sizes

Special Signs C.

- Maximum size, number, and height of special signs shall conform 1. with Table C.
- Temporary Signs 2.
 - Maximum size, number and height of temporary signs shall conform with Table C and the provisions below.
 - Types: Commercial and non-commercial temporary signs of b. the following varieties are permitted:
 - Banners 1.
 - Permitted in accordance with Portable signs: 2. standards of the National Electrical Code and anchoring provisions of the Standard Building Code as enforced by the Charleston County Building Inspection Services Department.

^{**}Setback measured from midpoint of structure facing street or driveway.

c. Duration:

- Non-Commercial-A maximum of thirty (30) days per event.
- 2. Commercial-A maximum of thirty (30) days, coinciding with the opening of a business.

Real Estate Signs

- a. Maximum size, number and height of real estate signs shall conform with Table C.
- Signs shall face a maximum of two directions, and may be mounted back-to-back or V'ed.
- c. Where signs are V'ed, the space between panels shall not exceed three (3) feet at the point at which panels are closest, and the interior angle formed by signs shall not exceed sixty (60°) degrees. For purposes of these requirements, V'ed signs shall be counted as one (1) sign.
- Where signs face two directions, whether back-to-back or V'ed, both signs must be the same standard size.

Flags used as Signs

- a. Permit required: A permit shall be required for the installation of all flag poles or flag display devices erected on lots zoned or in multi-family, office, commercial, or industrial use.
- b. Location/Engineering Review: Applicant must submit with the permit application a scaled site plan giving the location of flag pole(s) and complete dimensional and installation engineering data.
- Clearance Certification: Applicant must provide documentation of minimum clearance from electric, telephone or cable TV lines as certified by the proper utility prior to issuance of permit, or installation.
- Maximum size and number of flags used as signs, and height of flag poles shall conform with Table C.**

Effective 12/21/88

e. The American flags and the flag of the State of South Carolina are exempt from the provisions for maximum size of flags and maximum size of flagpoles in Table C, and no permit shall be required for the installation of said flags and flagpoles.

TABLE C

	SPECIA	_ SIGNS	
TYPE	MAXIMUM SIZE	MAXIMUM NUMBER	MINIMUM SETBACK MAXIMUM HEIGHT
Real Estate	'For Sale' (Residential) 8 sq. ft.	'For Sale' (Residential) 2 1 per frontage	'For Sale' 6 ft. (Residential)
	Other (Non-Residential) 48 sq. ft.	Other (Non-Residential) 1 per 1000 ft. Frontage Maximum: 3 per lot	Other (Non-Residential) (see text) Max. Height: 15 ft.
Subdivision/Multi- Family I.D. Signs	32 sq. ft.	2 per entrance	Minimum setback: 5 ft. Maximum height: 15 ft.
Directional	3 sq. ft.	Unlimited	4 ft.
Temporary	40 sq. ft.	1 per lot per event	Minimum setback: 5 ft. Maximum height: 15 ft.
Flags	60 sq. ft.	3 per zoning lot	35 ft. or 15 ft. above highest point of roof

D. Amortization

 All legally existing non-conforming permanent On-Premise signs shall be removed, altered or otherwise made to conform to the provisions of this ordinance. In order to allow a gradual, orderly transfer of signage which will preserve public perceptions of business identities and locations and not unduly burden business

Effective 12/21/88

owners with short-term transfer costs, the period for conformance shall be within seven (7) years of the date of adoption of this amendment.

2. All other On-Premise signs shall be removed, altered, or brought into compliance with the provisions of this Ordinance within six (6) months of ratification of this amendment.

III. Off-Premise Signs

A. All Off-Premise Signs shall be constructed in compliance with Outdoor Advertising of America Standards as allowed in Section 6-2, 6-3, 6-4, and 6-5.

B. Location and Setbacks

- 1. Off-Premise Signs may be installed as permitted in Article I0, Table I.
- 2. Permitted sizes, maximum height, minimum setbacks and location criteria shall be as listed in Table D.

C. Orientation

- 1. Signs shall face a maximum of two directions, and may be mounted back-to-back or V'ed.
- Where signs are V'ed, the space between panels shall not exceed three
 (3) feet at the point at which panels are closest, and the interior angle formed by signs shall not exceed ninety degrees (90°).

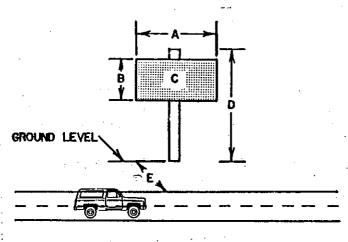
D. Compatible Size Signs

Where signs face two directions, whether back-to-back or V'ed, both signs must be the same standard size.

E. <u>Amortization</u>

- 1. All legally existing non-conforming Off-Premise signs shall be removed, altered or otherwise made to conform to the provisions of this ordinance within five (5) years of the date of adoption of this amendment. (11/l9/91)
- 2. All other Off-premise signs shall be removed, altered, or brought into compliance with the provisions of this Ordinance within six (6) months of ratification of this amendment. (5/19/87)

TABLE D


	OFF-	PREMISE SIG	ins		
Pei	mitted Sizes*			·	
Α.	Length (ft.)	48	36	24	14
В.	Width (ft.)	14	10 ½	12	6
C.	Area (sq. ft.)	672	378	288	84
D.	Maximum Height(ft.)**	40			
E.	Minimum Setback (ft.) (front/side)	25/20			
F.	Location Criteria*** Distance from closest off-premise sign	1000			-
,	Distance from closest on-premise sign	500		·	

NOTES

*All Off-Premise signs are permitted a ten (10) inch allowance in size in addition to permitted sizes.

Extensions to the basic rectangular Off-Premise outdoor advertising sign copy area may be a maximum of five (5) feet on the top; two (2) feet on the sides; and one (1) foot on the bottom.

- **Adjacent to an elevated highway, signs shall not exceed twenty-five (25) feet in height above the road bed.
- ***Applies to signs on same side of road and is measured along the center line of the road from which sign is to be viewed.

ASSOCIATES 29407 LESTER S.C. HOFFMAN Land Planning DRIVE 29

> S PARK CAROLINA SOUTH SITE 78 BUS PRELIMINARY

PLAN

U.S HWY CHARLESTON PROJECT 98080.00

DATE:6-19-98 SCALE:1"=100'

DESIGN: DRAWN: ADB CHECK:

REVISIONS
REVIEW: 8-3-00 BUPFERS AND
DITEMAKE CHANGES AND
REVIEW 8-17-00 ADDED
SUMMARY
ADD

SHEET

of

(IN FEET)

1 inch = 100 ft

ZONING CASE 2845-C

DATE REC.: 10/23/98 **PLNG. BRD.:** 11/9/98

PUB. HEARING: 12/1/98 COMM: 12/10/98

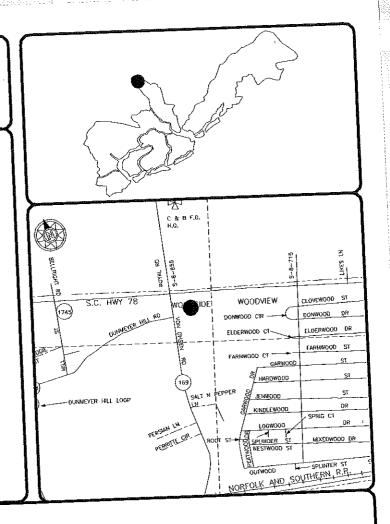
EXISTING ZONING: Agricultural General (AG)

REQUESTED CHANGE: Planned Development (PD-70)

LOCATION: North Area, 10175 Highway 78

TAX MAP NO.: 388-00-00-163

PARCEL SIZE: 28,67


APPLICANT: Stan Hall

4940 Dorchester Road

North Charleston, SC 29418

OWNER:

Norma C. Hall

2845-C

Existing Land Use

The subject property is comprised of 28.67 acres and has access to US Highway 78. Located along the entire eastern property line is a 50' drainage right-of-way. To the east of this right-of-way is a vacant 4.7 acre parcel zoned General Commercial (CG). Woodside Manor Subdivision and a vacant 11.9 acre former oxidation pond are located to the south of this commercial parcel and are zoned Single-Family Residential (RS-8). Just to the west of the subject property is a 4.4 acre undeveloped parcel zoned Agricultural Residential (AR). Occupying the two parcels to the west of this are a single-family residence, a tack shop (Carousel Tack Shop), and a horse riding school on properties zoned Agricultural Residential (AR). On the corner of US Highway 78 and Von Oshen Road is vacant commercial building zoned Community Commercial (CC). To the south of this parcel are several mobile homes zoned Agricultural Residential (AR). Also, located on an 11.3 acre tract to the west on a parcel zoned AR is the Summerville School Bus Maintenance Facility. There area a number of automotive repair businesses along with vacant undeveloped properties and one single-family residence located to the north across US Highway 78 that are in Berkeley County. This section of US Highway 78 is characterized mainly by commercial uses interspersed with single-family residential development along with undeveloped properties.

Staff Analysis

- The applicant is requesting that the subject property be rezoned from the Agricultural General (AG) District to a Planned Development (PD-70) District in order to develop the site as a business park over an approximate 10 year period. The primary business park land uses will be office warehouse, warehouse distribution, and compatible trade services of a non-nuisance nature. An approximate 11 acre portion having frontage on US Highway 78 and indicated on the site plan will be committed to more of an emphasis on business and trade services. Because of the high visibility and accessibility to US Highway 78, the applicant would like to utilize part of this area for office and commercial uses. For this portion of the development the applicant is requiring non-metal/bare block facade to the buildings facing US Highway 78 and will be making improvements to the ponds as aesthetic water features. The preliminary site plan indicates a primary access road that will provide access throughout the park. The final size and configuration of the proposed lots will be market driven, therefore the applicant is requesting flexibility as to the final tract sizes.
 - 2. In 1995, Charleston County assembled an economic development study titled, "Comprehensive Development Sites Inventory". The document recommended two sites located on US Highway 78 in close proximity to the subject parcel for development as industrial, light industrial, manufacturing, warehouse, or service/distribution uses. The Suitability Analysis stated that these locations were prime for such development due to their proximity to rail service, interstate highways (I-26 & I-95) and the Charleston International Airport. In addition to access, the sites are also easily serviceable by all utilities and the soils and topography are suitable for such development.
 - The development guidelines for this proposed planned development limit the uses to eliminate any possible uses that may contain nuisances such as sewage treatment plants, waste disposal facilities, chemical operations, junk or salvage yards, airports/airstrips, logging camps, sawmills, sexually oriented businesses and outdoor gun ranges. The planned development district offers control over future development at this location. Because of this control over the uses along with the suggestions of the "Comprehensive Development Sites Inventory", the proposed project is suitable for this site and should not have a negative impact on the surrounding properties.

Recommendation:

APPROVAL

NOTE:

If approved, a deceleration lane on US Highway 78 as required by County

Planning Department and permitted by SC DOT shall be provided.

Rezoning Information Sheet

The top portion of this sheet must be completed and signed by the applicant and a zoning inspector prior to submitting the application.

rrent Information				: •
x Map Number(s) <u>388 - 00</u>	-00-163			<u> </u>
Idress WEST SIDE O	F US HWY	78 H	orth of Ladson	
oposed Use(s) BUSINESS	SERVICE 1	AND L	16HT INDUSTRIAL	
oposed Use(s) BUSINESS and Use Code(s) 4000,55000	3100,4100,5000	2,5100,52	200,5900,5400,5600,5	<u>700,6000,6100,6</u> 20
istrict(s) Allowing Proposed Use(s)	IH, IL, CG, CC	, CH, P, OE	<u>i</u>	
to the best of my knowledge, the above				
applicant's Signature	Date	Zonin	g Signature	Date
For office use only:				
Prior History				
Has this property been cited for a zoning	5 *10.m.] Yes ⊿ N	Autorities.	
DateTy				
Have rezoning applications been submi	tted previously for th	is property?	□ Yes □ No	
1. Daguest Number	Date		Decision(App/Dis)	
2. Dogwoot Number	Date		Decision(App/Dis)	
3. Request Number	Date		_Decision(App/Dis)	
Application Number				
Date Submitted				
Amount Received		Cash	□ Check	• •
Receipt Number				

Planner's Signature

February 21, 2022

To:

Josh Johnson, P.E., PTOE

District Traffic Engineer SCDOT District 6

From: Dillon Turner, PE, PTOE

Kimley-Horn

Elms Glen Residential Development Traffic Impact Analysis Response to SCDOT Comments

Josh:

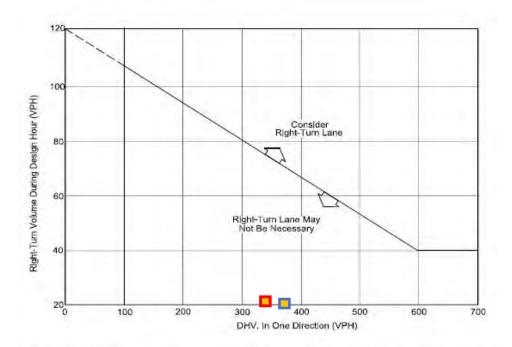
Kimley-Horn submitted the Elms Glen Residential Development Traffic Impact Analysis to the South Carolina Department of Transportation (SCDOT) via email on Thursday, December 23, 2021.

You had the following comments sent to Kimley-Horn via email on Wednesday, December 29, 2021:

- The right-turn lane analysis worksheet is missing for site access 2.
- 2. Were signal timings also optimized in the 'no build' condition? The TIA can't take credit for optimizing in the 'build' condition unless timings are also optimized in the 'no build' condition. Additionally, to use signal timing changes as a solution, we will need to review the signal timing reports from Synchro to ensure reasonable splits and other timing parameters are used (Synchro tends to use unreasonably short cycles and splits).
- 3. No left-turn lane is recommended at site access 2, but the chart shows the plotted point where it may be warranted. Combined with the queueing information from the analysis which could back up traffic through this intersection (and thus block the ability for a left turn from the southbound through lane), it appears a left-turn lane at this site access may be needed.

Our responses to the above comments were submitted via email on Monday January 31, 2022 and approved via email on Thursday, February 3, 2022. Our responses to comments are as follows:

- The right-turn lane analysis worksheet is missing for site access 2.
 - The right-turn lane analysis worksheet is attached to this memorandum.
- 2. Were signal timings also optimized in the 'no build' condition? The TIA can't take credit for optimizing in the 'build' condition unless timings are also optimized in the 'no build' condition. Additionally, to use signal timing changes as a solution, we will need to review the signal timing reports from Synchro to ensure reasonable splits and other timing parameters are used (Synchro tends to use unreasonably short cycles and splits).
 - In the TIA, the timings were not optimized in the no build. However, we did a supplemental analysis with the no build (with optimized splits) and build with optimized splits. The Synchro files and table (Attachment 2) are attached.
 - The build operates better than then background even with more traffic volume.
 - As we explored this, there is something with the southbound left-turn volume affecting the eastbound right-turn delay.
 - In the AM no-build condition, the southbound left-turn volume is 177 vehicles and the eastbound right-turn delay is 109.2 seconds


- 2. In the AM build condition, the southbound left-turn volume is 179 vehicles and the eastbound right-turn delay is 84.2 seconds, in the same build file, if we drop the volume back down to no-build (177), the eastbound right-turn lane increases to 115.4 seconds.
- 3. No left-turn lane is recommended at site access 2, but the chart shows the plotted point where it may be warranted. Combined with the queueing information from the analysis which could back up traffic through this intersection (and thus block the ability for a left turn from the southbound through lane), it appears a left-turn lane at this site access may be needed.
 - We mistakenly left-out the SimTraffic files (attached to this email in Attachment 3).
 The SimTraffic files show that the 95th percentile southbound left-turn queue at Site Access #2 was 86' in the AM peak hour and 71' in the PM peak hour (so just over 3 cars). For SimTraffic we allowed for the NBT traffic on Von Ohsen Road to block the access to be mimic what would happen in the field.
 - Also, the left-turn lane was not warranted in the AM peak hour (by a significant margin) and just at the warrant line in the PM peak hour
 - i. Therefore, Kimley-Horn does not think the southbound left-turn lane into Site Access #2 is necessary.

Attachments:

Attachment 1 – Site Access #2 Right-Turn Lane Analysis Worksheet

Attachment 2 – Synchro Summary Table for Von Ohsen Road/Royale Road at US 78 with Updated Traffic Signal Splits

Attachment 3 – SimTraffic Queues for Build-Out Conditions

Note: For highways with a design speed below 50 miles per hour with a DHV < 300 and where right turns > 40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

Example

Given: Design Speed = 35 miles per hour

DHV = 250 vehicles per hour Right Turns = 100 vehicles per hour

Problem: Determine if a right-turn lane is necessary.

Solution: To read the vertical axis, use 100 - 20 = 80 vehicles per hour. The figure

indicates that a right-turn lane is not necessary, unless other factors (e.g., high

crash rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS Figure 9.5-A

Von Ohsen Road at Site Access #2

Northbound	Right	DHV	RTs
	2028 Build AM	389	3
-	2028 Build PM	343	15

	Von Oh	sen Road	l/Royle Ro	ad at US	78 LOS (I	Delay) Sigi	nal Timing	Mitigatio	n	
Condition	Magazina	EB (l	JS 78)	WB (l	JS 78)	NB (Von O	hsen Road)	SB (Roy	/le Road)	lusta na a ati a m
Condition	Measure	EBL	EBTR	WBL	WBTR	NBL	NBTR	SBL	NBTR	Intersection
AM Peak Hou	ır									
2028	LOS (Delay)	F (9	93.7)	D (3	39.0)	F (9	99.8)	D (4	46.5)	F (72.4)
No-Build	Synchro 95th Q	134'	#1071'	66'	468'	44'	#595'	#215'	290'	E (73.4)
2028 Build	LOS (Delay)	F (7	73.2)	D (3	36.4)	F (1	07.3)	D (4	47.0)	E (66.7)
2020 Bullu	Synchro 95th Q	#153'	#1094'	68'	#550'	57'	#623'	#220'	293'	□ (00.7)
PM Peak Hou	ır									
2028	LOS (Delay)	F (1	12.5)	F (1	62.8)	C (;	32.7)	D (5	51.2)	E (106.0)
No-Build	Synchro 95th Q	#247'	#833'	#306'	#1085'	63'	341'	112'	414'	F (106.2)
2028 Build	LOS (Delay)	F (1	15.1)	F (1	47.4)	C (3	31.7)	D (5	51.5)	F (101.2)
ZUZO BUIIU	Synchro 95th Q	#246'	#917'	#318'	#1127'	75'	#362'	117'	423'	F (101.2)
	Existing Storage	125'		250'		250'		150'		

Notes:

- Delay represented in sec/veh
 # 95th percentile volume exceeds capacity, queue may be longer.

Intersection: 1: Equipment Share & US 78

Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	36	89
Average Queue (ft)	9	37
95th Queue (ft)	31	74
Link Distance (ft)		882
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 2: Von Ohsen Road & Dunmeyer Hill Road/Site Access #2

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	234	125	200	140
Average Queue (ft)	86	45	49	16
95th Queue (ft)	235	104	151	86
Link Distance (ft)	946	598	1826	310
Upstream Blk Time (%)				0
Queuing Penalty (veh)				0
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: Von Ohsen Road/Royle Road & US 78

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	250	1811	275	638	250	395	285	499	
Average Queue (ft)	193	1726	117	333	101	357	162	237	
95th Queue (ft)	324	2032	284	569	265	432	290	553	
Link Distance (ft)		1756		1144		310		1106	
Upstream Blk Time (%)		72				40		1	
Queuing Penalty (veh)		0				191		0	
Storage Bay Dist (ft)	150		175		150		200		
Storage Blk Time (%)	10	59	0	34	0	69	18	7	
Queuing Penalty (veh)	82	112	0	30	0	36	68	12	

Intersection: 1: Equipment Share & US 78

Movement	EB	EB	WB	WB	NB
Directions Served	T	R	L	T	LR
Maximum Queue (ft)	2	2	174	1018	626
Average Queue (ft)	0	0	83	452	244
95th Queue (ft)	2	2	210	1115	664
Link Distance (ft)	1144			1207	882
Upstream Blk Time (%)				1	3
Queuing Penalty (veh)				11	0
Storage Bay Dist (ft)		150	150		
Storage Blk Time (%)			0	39	
Queuing Penalty (veh)			0	26	

Intersection: 2: Von Ohsen Road & Dunmeyer Hill Road/Site Access #2

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	100	44	66	114
Average Queue (ft)	37	18	3	17
95th Queue (ft)	78	44	33	71
Link Distance (ft)	946	598	1826	310
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: Von Ohsen Road/Royle Road & US 78

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	250	1749	275	1159	249	365	299	516	
Average Queue (ft)	198	1057	218	1112	78	207	106	252	
95th Queue (ft)	319	1951	358	1295	199	334	239	421	
Link Distance (ft)		1756		1144		310		1106	
Upstream Blk Time (%)		20		21		3			
Queuing Penalty (veh)		0		177		14			
Storage Bay Dist (ft)	150		175		150		200		
Storage Blk Time (%)	10	60	6	62	6	23	0	15	
Queuing Penalty (veh)	62	103	43	145	19	14	1	21	

Elms Glen Residential Development

Traffic Impact Analysis

Ladson, South Carolina

Prepared for

Stanley Martin Homes, LLC

Prepared by

Kimley » Horn

Elms Glen Residential Development

Traffic Impact Analysis

Ladson, South Carolina

Prepared for

Stanley Martin Homes, LLC.

Prepared by

Kimley » Horn

No. 33615 ES MILLEN BRENT TURNS BRENT BREN

December 2021
© Kimley-Horn and Associates, Inc.
115 Fairchild Street, Suite 250
Charleston, South Carolina, 29492

Table of Contents

1 Exe	ecutive Summary	iii
2 Inti	roduction	1
	sting and Future No-Build Conditions	
3.1	2021 Existing Traffic Volume Development	3
3.2	2028 No-Build Traffic Volume Development	3
4 Pro	oject Traffic	7
4.1	Trip Generation	7
4.2	Trip Distribution & Assignment	8
4.3	2028 Build Traffic Development	8
5 Ca _l	pacity Analysis	12
5.1	EquipmentShare Access/Site Driveway #1 at US 78	13
5.2	Von Ohsen Road at Dunmeyer Hill Road/Site Access #2	14
5.3	Von Ohsen Road/ Royle Road at US 78	15
6 Co	nclusion	17

List of Figures

Figure 1 – 2028 Build Recommended Geometry	iv
Figure 2 – Site Location and Study Area Map	2
Figure 3 – Existing Lane Geometry and Traffic Control	4
Figure 4 – 2021 Existing Peak-Hour Traffic Volumes	5
Figure 5 – 2028 No-Build Peak-Hour Traffic Volumes	6
Figure 6 – Project Trip Distribution & Assignment	9
Figure 7 – 2028 Build Project Trips	10
Figure 8 – 2028 Build Peak-Hour Traffic Volumes	11
Figure 9 – 2028 Build Recommended Geometry	18
List of Tables	
Table 1 – Trip Generation Summary	7
Table 2 – <i>HCM</i> Level of Service Criteria	12
Table 3 – EquipmentShare Access/Site Driveway #1 at US 78 Analysis Results	13
Table 4 – Von Ohsen Road at Dunmeyer Hill Road/Site Access #2 Analysis Results	14
Table 5 – Von Ohsen Road/Royle Road at US 78 Analysis Results	16

List of Appendices

- A Proposed Development Site Plan
- B Turning Movement Counts; Growth Rate Calculation
- C Traffic Volume Development Worksheets
- D Capacity Analysis Worksheets
- E Turn Lane Warrant Analyses

1 Executive Summary

The proposed Elms Glen Residential Development is located on the southeast corner of US 78 at Von Ohsen Road in Charleston County, SC. The proposed residential development is planned to consist of 141 single family houses and 167 town houses. Based on the preliminary site plan, it is assumed that the project will provide access via two access points:

- One proposed full-movement driveway along Von Ohsen Road to form a fourth leg at the intersection with Dunmeyer Hill Road
- One existing full-movement driveway along US 78 that serves the EquipmentShare development.

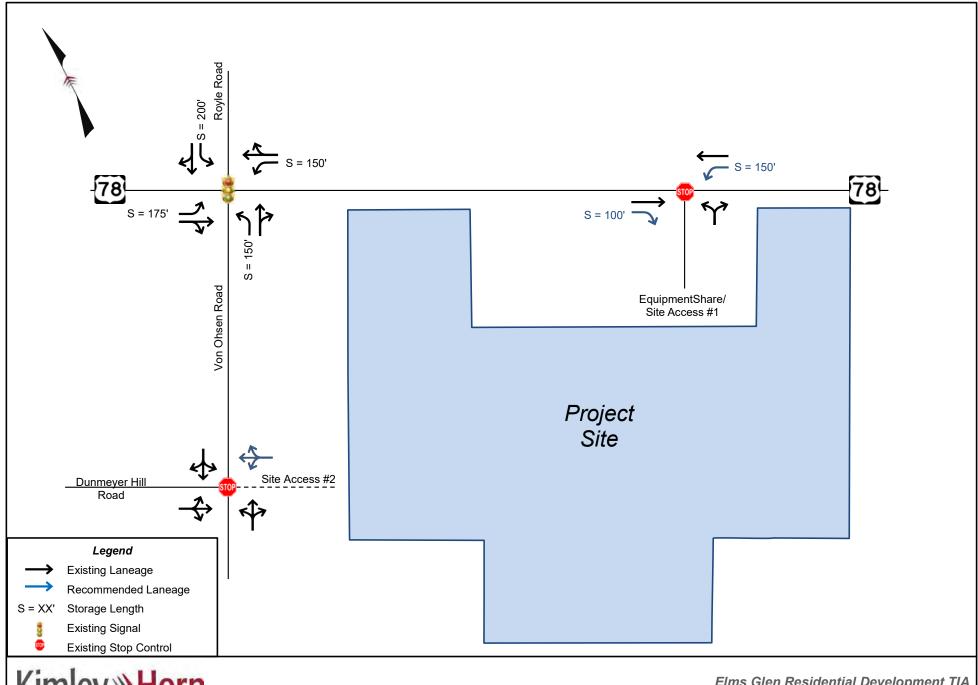
It was assumed that the development will be built and fully occupied by 2028. This TIA summarizes the results of traffic operations under 2021 Existing, 2028 No-Build, and 2028 Build conditions during the AM and PM peak hours at the following three study intersections:

- 1) EquipmentShare Access/Site Driveway #1at US 78 Unsignalized, full-movement
- Von Ohsen Road at Dunmeyer Hill Road/Site Access #2 Unsignalized, full-movement
- 3) Von Ohsen Road/Royle Road at US 78 Signalized

Kimley-Horn was retained to determine the potential traffic impacts of this development and identify transportation improvements that may be required to accommodate these impacts in accordance with the guidelines set forth in the South Carolina Department of Transportation (SCDOT) Access and Roadside Management Standards (ARMS) Manual and SCDOT Roadway Design Manual. This report presents trip generation, trip distribution, capacity analyses, and recommendations for transportation improvements required to mitigate anticipated traffic demands produced by the subject development.

Based on the capacity analyses performed at each of the identified study intersections, along with review of the auxiliary turn-lane warrants contained herein, the following improvements have been identified to mitigate the impact of the proposed development on the adjacent street network under 2028 Build Conditions. Recommended lane geometry improvements can be seen in **Figure 1**.

EquipmentShare Access/Site Access #1 at US 78


- Construct a westbound left-turn lane along US 78. The westbound left-turn lane should be designed per SCDOT guidelines.
- Construct an eastbound right-turn lane along US 78. The eastbound right-turn lane should be designed per SCDOT Guidelines. The eastbound right-turn lane is an accordance with the Planned Unit Development (PUD) agreement.

Von Ohsen Road at Dunmeyer Hill Road/Site Access #2

Construct the site access with one egress lane and one ingress lane.

Von Ohsen Road/Royle Road at US 78

Optimize the traffic signal splits during the AM and PM peak hours.

2 Introduction

The proposed Elms Glen Residential Development is located on the southeast corner of US 78 at Von Ohsen Road in Charleston County, SC. The proposed residential development is planned to consist of 141 single family houses and 167 town houses. Based on the preliminary site plan, it is assumed that the project will provide access via two access points:

- One proposed full-movement driveway along Von Ohsen Road to form a fourth leg at the intersection with Dunmeyer Hill Road
- One existing full-movement driveway along US 78 that serves the EquipmentShare development.

The location of the proposed development and current site plan are provided in **Figure 2** and **Appendix A**, respectively.

It was assumed that the development will be built and fully occupied by 2028. This TIA summarizes the results of traffic operations under 2021 Existing, 2028 No-Build, and 2028 Build conditions during the AM and PM peak hours at the following three study intersections:

- 1) EquipmentShare Access/Site Driveway #1at US 78 Unsignalized, full-movement
- 2) Von Ohsen Road at Dunmeyer Hill Road/Site Access #2 Unsignalized, full-movement
- 3) Von Ohsen Road/Royle Road at US 78 Signalized

Kimley-Horn was retained to determine the potential traffic impacts of this development and identify transportation improvements that may be required to accommodate these impacts in accordance with the guidelines set forth in the South Carolina Department of Transportation (SCDOT) Access and Roadside Management Standards (ARMS) Manual and SCDOT Roadway Design Manual. This report presents trip generation, trip distribution, capacity analyses, and recommendations for transportation improvements required to mitigate anticipated traffic demands produced by the subject development.

Kimley » Horn

Elms Glen Residential Development TIA Figure 2 - Site Location and Study Area Map

3 Existing and Future No-Build Conditions

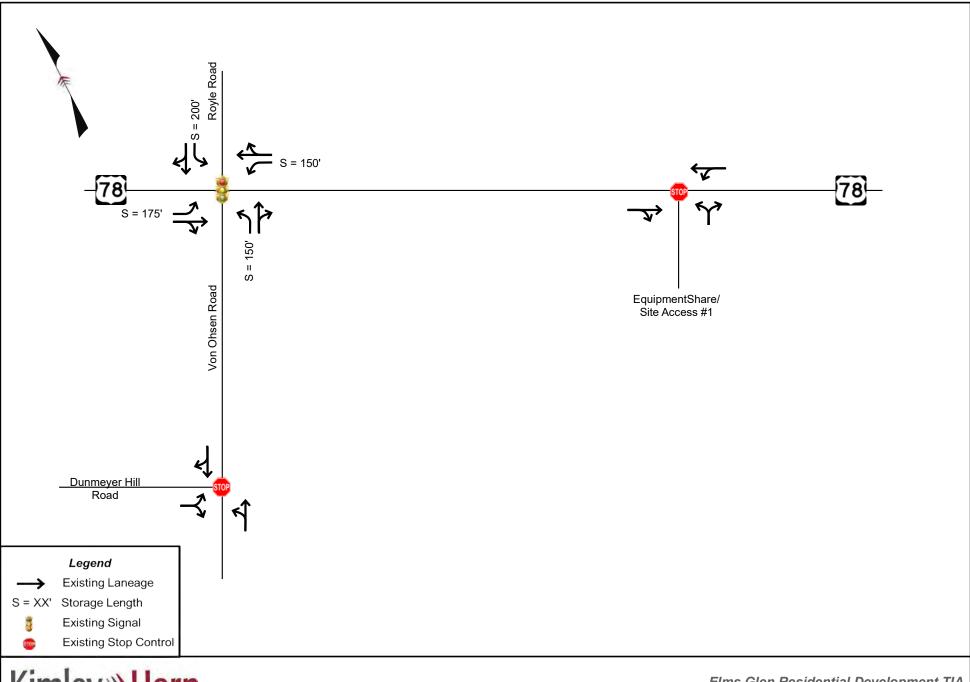
Key characteristics of each of the major roadways within the project study area are described below.

Von Ohsen Road is a two-lane, undivided, urban major collector with a posted speed limit of 35 miles per hour (mph). Based upon SCDOT annual average daily traffic (AADT) data, 5,700 vehicles per day traveled along Von Ohsen Road in 2019 at count station 10-055 located southwest of the Dunmeyer Hill Road intersection.

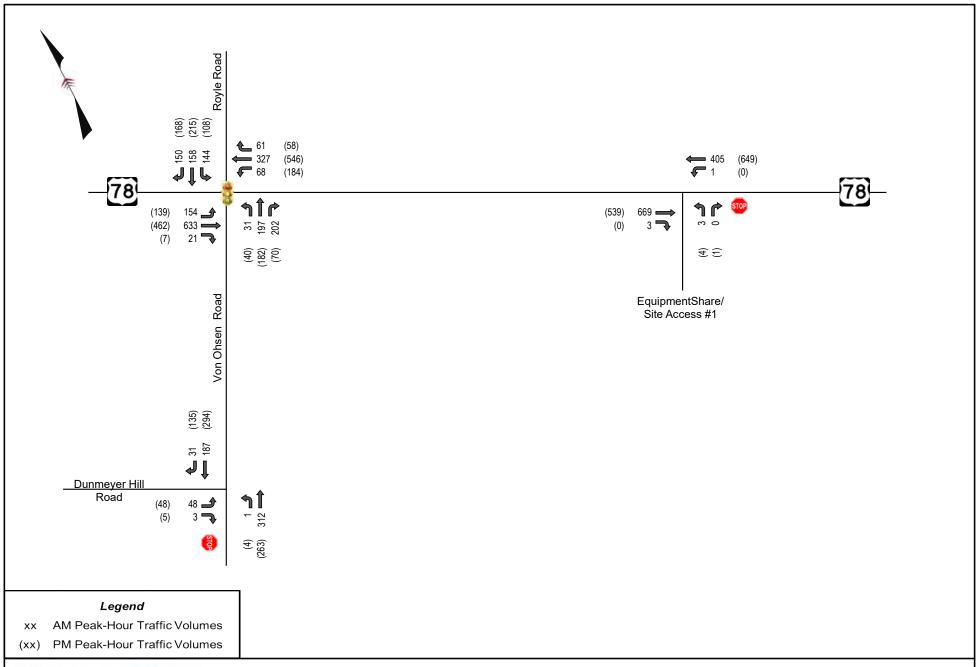
US 78 is a two-lane, undivided, urban principal arterial with a posted speed limit of 45 mph. Based upon SCDOT AADT data, 15,500 vehicles per day traveled along US 78 in 2019 at count station 10-0182 located southeast of the Von Ohsen intersection.

The existing geometry and traffic control for the study area intersections is illustrated in Figure 3.

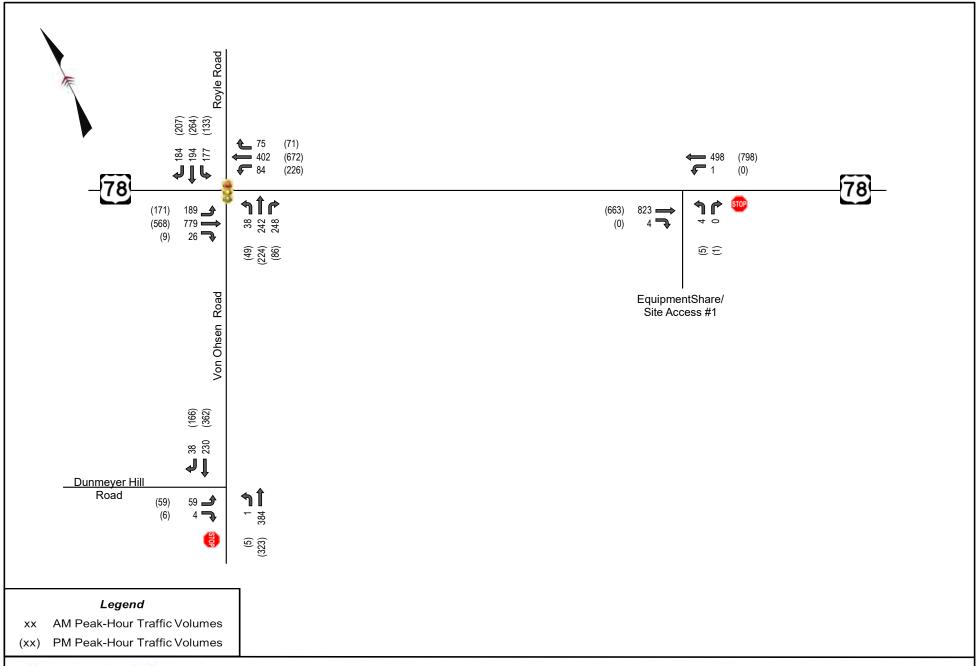
3.1 2021 Existing Traffic Volume Development


Traffic data was not collected for the TIA. Instead, peak hour intersection turning movement counts from 2019 were obtained through SCDOT for the intersection of Von Ohsen Road/Royle Road at US 78. A growth rate was developed by using historic AADT data provided through SCDOT along Von Ohsen Road and US 78. Based on the results, a growth rate of 3.0% was determined, and used to grow the 2019 turning movement counts to the 2021 Existing AM and PM peak hour traffic volumes.

Peak hour intersection turning movement counts for the intersections of EquipmentShare Access at US 78 and Von Ohsen Road at Dunmeyer Road were obtained from the *Elms Glen Traffic Impact Analysis* (Bihl Engineering, May 2021).


Due to the ongoing COVID-19 pandemic, the 2021 traffic volumes were factored by 15% during the AM peak hour and 2% during the PM peak hour in accordance with SCDOT District 6 guidelines. These 2021 Existing peak hour traffic volumes can be seen in **Figure 4**. The growth rate calculations and existing traffic data used for this study are provided in **Appendix A**.

3.2 2028 No-Build Traffic Volume Development


It was assumed that the development will be built and fully occupied by 2028. Therefore, future traffic volumes were developed for the year 2028. 2021 Existing traffic volumes were adjusted by a growth rate of 3% per year for seven years to obtain 2028 No-Build traffic volumes. No approved, committed developments were identified within the study area. **Figure 5** illustrates the 2028 No-Build condition traffic volumes for the AM and PM peak hours.

4 Project Traffic

4.1 Trip Generation

The trip generation rates and equations published in the Institute of Transportation Engineers' (ITE) *Trip Generation Manual, 10th Edition* were used to estimate the trip generation potential for the development. The analysis was performed using the information provided for the following land use codes (LUCs):

- LUC 210 Single-Family Detached Housing
- LUC 220 Multifamily Housing (Low-Rise)

Due to the residential, single-land-use nature of the development, internal capture and pass-by trip reductions were not considered in the trip generation analysis.

The estimated trip generation for the Elms Glen Residential Development is summarized in **Table 1**, which indicates that the development is anticipated to generate 183 trips (44 in/139 out) during the AM peak hour and 234 trips (148 in/86 out) during the PM peak hour.

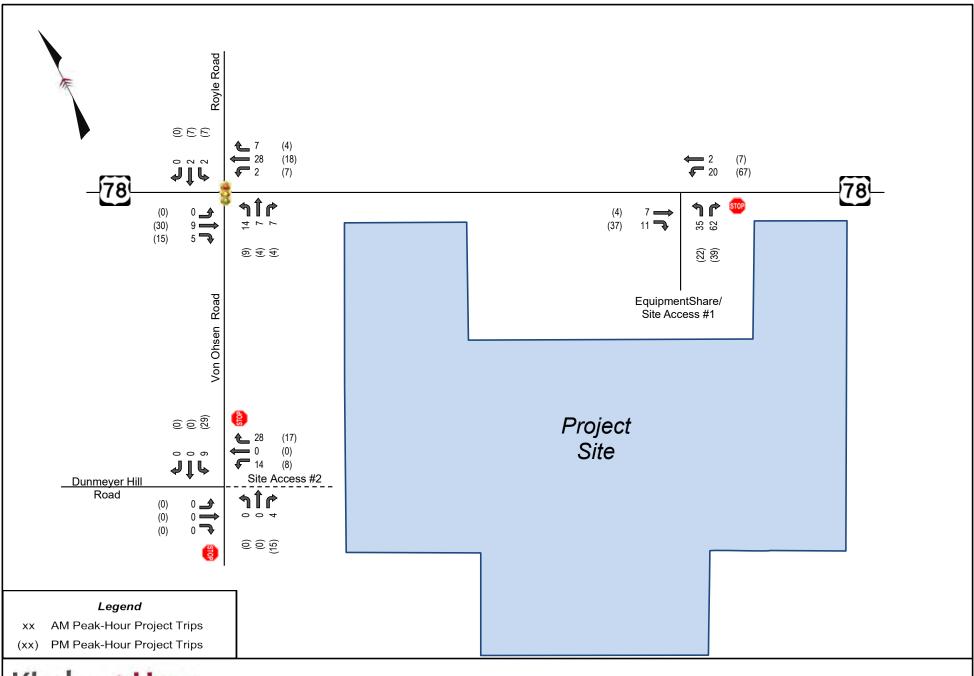
Table 1 – Trip Generation Summary

		Trip (Seneration	N.						
Land Use	Intensity	Units	Delle	AM Peak Hour			PM Peak Hour			
			Daily	Total	ln .	Out	Total	ln	Out	
Residential Land Uses				183	44	139	234	148	86	
210 - Single-Family Detached Housing	141	DU	1,426	105	26	79	141	89	52	
220 - Multifamily Housing (Low-Rise)	167	DU	1,222	78	18	60	93	59	34	
Subtotal			2,648	183	44	139	234	148	86	
Internal Capture			0	0	0	0	0	0	0	
Pass-By			0	0	0	0	0	0	0	
Total Net New External Trips				183	44	139	234	148	86	
Residential Land Uses 210 - Single-Family Detached Housing 220 - Multifamily Housing (Low-Rise)	ITE 210 ITE 220									
AM Peak-Hour Traffic Generation										
Residential Land Uses 210 - Single-Family Detached Housing	ITE 210	-	T = 0.71 * /	V\ + // 0\+ /2	E 0/ In: 75 0	(Out)				
220 - Multifamily Housing (Low-Rise)	ITE 220	¥	T = 0.71 * (X) + (4.8); (25 % In; 75 % Out) LN (T) = 0.95 * LN (X) + (-0.51); (23 % In; 77 % Out)							
PM Peak-Hour Traffic Generation										
Residential Land Uses										
210 - Single-Family Detached Housing ITE 210 =			LN (T) = 0.96 * LN (X) + (0.2); (63 % In; 37 % Out)							

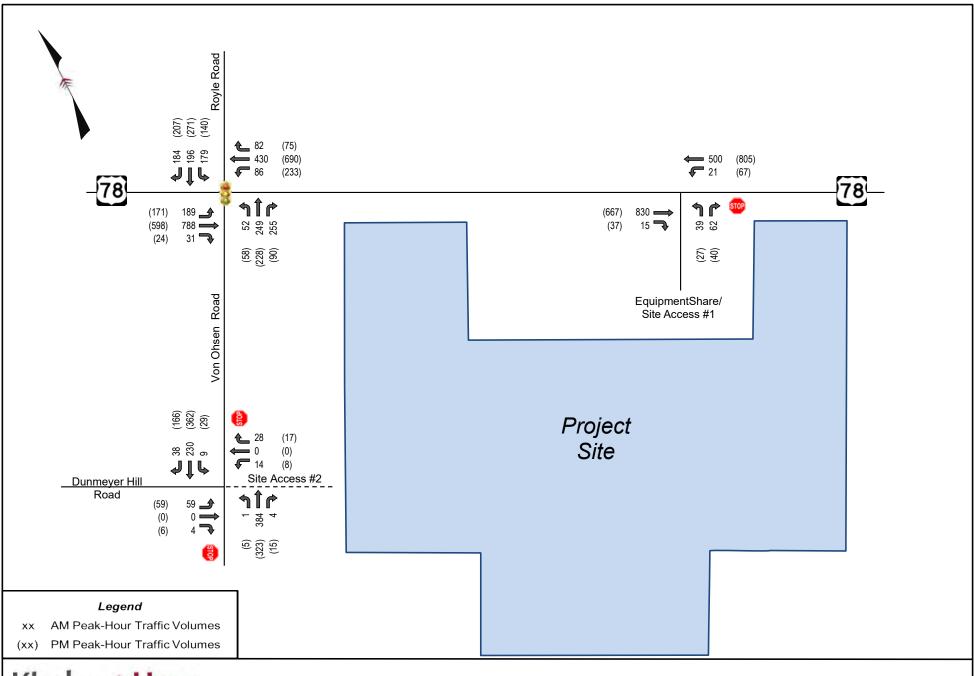
4.2 Trip Distribution & Assignment

New external trips generated by the proposed development were distributed and assigned to the surrounding roadway network based on existing travel patterns, surrounding land uses, and the proposed site layout. The trip distribution percentages used in this analysis are as follows.

- 30% to/from the West via US 78
- 50% to/from the East via US 78
- 10% to/from the North via Royle Road
- 10% to/from the South via Von Ohsen Road


The site trip distribution and proposed new external project trips are illustrated in **Figure 6** and **Figure 7**, respectively.

4.3 2028 Build Traffic Development


The Elms Glen Residential Development project traffic volumes were added to the 2028 No-Build traffic volumes to develop the 2028 Build traffic volumes. **Figure 8** illustrates the 2028 Build traffic volumes for the AM and PM peak hours.

Elms Glen Residential Development TIA Figure 6 - Project Trip Distribution and Assignment

5 Capacity Analysis

Capacity/level-of-Service (LOS) analyses were conducted using *Highway Capacity Manual*, 6th *Edition* (HCM6) methodologies in Synchro Version 11 traffic analysis software. Capacity analyses were conducted for the AM and PM peak hours under 2021 Existing, 2028 No-Build, and 2028 Build conditions.

As defined by HCM6, intersection level of service (LOS) grades range from LOS A to LOS F, which are directly related to the level of control delay at the intersection and characterize the operational conditions of the intersection traffic flow. LOS A operations typically represent ideal, free-flow conditions where vehicles experience little to no delays, and LOS F operations typically represent poor, gridlocked conditions with high vehicular delays, and are generally considered undesirable. **Table 2** lists the LOS control delay thresholds published *in HCM6* for signalized and unsignalized intersections.

LOS	Control Delay per	r Vehicle (sec/veh)
LOG	Signalized Intersections	Unsignalized Intersections
Α	≤ 10	≤ 10
В	> 10 – 20	> 10 – 15
С	> 20 – 35	> 15 – 25
D	> 35 – 55	> 25 – 35
E	> 55 – 80	> 35 – 50
F	> 80	> 50

Table 2 - HCM Level of Service Criteria

As part of the intersection analysis, SCDOT's default Synchro parameters were utilized. Existing peak-hour factors (PHFs) were utilized for the existing scenarios and the PHFs for the future-year scenarios were adjusted to a minimum of 0.90 and maximum of 0.95. Existing heavy vehicle percentages were utilized for all scenarios, with a minimum of 2% considered.

The following sections outline the results of the capacity analysis for each of the study intersections. The capacity analysis worksheets are included in **Appendix D**.

5.1 EquipmentShare Access/Site Driveway #1 at US 78

The capacity analysis results for the EquipmentShare Access/Site Driveway #1 at US 78 intersection are summarized in **Table 3** below.

Table 3 - EquipmentShare Access/Site Driveway #1 at US 78 Analysis Results

	EquipmentS	hare Access/Site Driveway	#1 LOS (Delay)	
Candition	Magazina	EB (US 78)	WB (US 78)	NB (EquipmentShare)
Condition	Measure	EBTR	WBLT	NBLR
AM Peak Hour				
2021 Existing	LOS (Delay)	A (0.0)	A (9.2) ²	C (22.9)
2021 Existing	HCM6 95th Q	0'	0'	3'
2020 No Duild	LOS (Delay)	A (0.0)	A (9.9) ²	D (31.8)
2028 No-Build	HCM6 95th Q	0'	0'	3'
2028 Build	LOS (Delay)	A (0.0)	B (10.1) ²	E (45.0)
2020 Bullu	HCM6 95th Q	0'	3'	78'
PM Peak Hour				
2021 Existing	LOS (Delay)	A (0.0)	A (0.0) ²	C (21.7)
2021 Existing	HCM6 95th Q	0'	0'	3'
2028 No-Build	LOS (Delay)	A (0.0)	A (0.0) ²	D (30.6)
ZUZO INO-BUIIU	HCM6 95th Q	0'	0'	3'
2020 Duild	LOS (Delay)	A (0.0)	A (9.5) ²	E (41.6)
2028 Build	HCM6 95th Q	0'	8'	48'
Neter	Existing Storage			

Notes:

- 1. Delay represented in sec/veh
- 2. Left-Turn Delay Reported

Based on the results in the **Table 3** above, the northbound approach is expected to operate at LOS D under 2028 No-Build conditions during the AM and PM peak hours. With the addition of project traffic, this northbound approach is expected to operate at LOS E.

Recommendation

Based on the agreements for the Planned Unit Development, an eastbound right-turn lane should be constructed at this intersection. The eastbound right-turn lane should be designed per SCDOT Guidelines. A left-turn lane warrant analysis was conducted using SCDOT Guidelines. Based on the results of the auxiliary turn-lane warrant analysis, a westbound left-turn lane should be constructed and designed per SCDOT Guidelines. The auxiliary turn-lane warrant analysis are attached in **Appendix E**.

5.2 Von Ohsen Road at Dunmeyer Hill Road/Site Access #2

The capacity analysis results for the Von Ohsen Road/Royle Road at US 78 intersection are summarized in **Table 4** below. As part of this development, Site Access #2 will be developed at this intersection as the westbound approach. This approach is planned to consist of one ingress and one egress lane and is proposed to be full-movement.

Table 4 - Von Ohsen Road at Dunmeyer Hill Road/Site Access #2 Analysis Results

		Von Ohsen Road at Dunme	yer Hill Road/Site Acces	ss #2 LOS (Delay)	
Condition	Measure	EB (Dunmeyer Hill Road)	WB (Site Access #2)	NB (Von Ohsen Road)	SB (Von Ohsen Road)
Condition	Measure	EBLTR	WBLTR	NBLTR	SBLTR
AM Peak Ho	ur				
2021	LOS (Delay)	B (13.2)	-	A (7.7) ²	A (0.0)
Existing	HCM6 95th Q	10'	-	0'	0'
2028 No-	LOS (Delay)	C (15.3)	-	A (7.9) ²	A (0.0)
Build	HCM6 95th Q	15'	-	0'	0'
0000 DId	LOS (Delay)	C (19.0)	B (13.2)	A (7.9) ²	A (8.2) ²
2028 Build	HCM6 95th Q	20'	8'	0'	0'
PM Peak Ho	ur				
2021	LOS (Delay)	C (15.7)	-	A (8.4) ²	A (0.0)
Existing	HCM6 95th Q	13'	-	0'	0'
2028 No-	LOS (Delay)	C (19.9)	-	A (8.8) ²	A (0.0)
Build	HCM6 95th Q	23'	-	0'	0'
0000 B 31	LOS (Delay)	D (29.7)	B (14.8)	A (8.8) ²	A (8.2) ²
2028 Build	HCM6 95th Q	38'	5'	0'	3'
	Existing Storage				

Notes:

- 1. Delay represented in sec/veh
- 2. Left-Turn Delay Reported

Based on the results presented in Table 4 all approaches at this intersection are expected to operate at an acceptable LOS during the AM and PM peak hours under 2028 No-Build and 2028 Build conditions. However, the eastbound approach is expected to drop from LOS C conditions to LOS D conditions when comparing 2028 No-Build results to 2028 Build results during the PM peak hour.

Recommendation

Based on the results of the capacity analysis, the additional traffic generated by this development is expected to have minimal impact on this intersection. The site access is recommended to be constructed with one egress lane and one ingress lane.

5.3 Von Ohsen Road/ Royle Road at US 78

The capacity analysis results for the Von Ohsen Road/Royle Road at US 78 intersection are summarized in **Table 5** on the next page.

Based on the results presented in **Table 5**, this intersection is expected to operate at a LOS E and LOS F under the 2028 No-Build condition during the AM and PM peak hours, respectively. Under the 2028 Build condition, this intersection is expected to operate at a LOS F during both the AM and PM peak hours without signal timing improvements. With the recommended signal timing improvements the intersection is anticipated to operate at LOS E and LOS F during the AM and PM peak hours, respectively.

Recommendation

Based on the analysis, this intersection experiences long delays and queueing under the 2028 No-Build conditions. The addition of project is expected to generate 3.4% of the total traffic at this intersection during the peak hours. Based on the project traffic being a small percentage of the total traffic volumes affecting this intersection, signal timing optimization is recommended based on Build traffic conditions. After optimizing signal timing, the intersection operates with less control delay under 2028 Build Improved conditions than under 2028 No-Build conditions. The results of this analysis can be seen in **Table 5**.

Table 5 - Von Ohsen Road/Royle Road at US 78 Analysis Results

		V	on Ohsen R	oad/Royle R	oad at US 78	LOS (Delay	·)			
0 - 122 - 1	M	EB	(US 78)	W	B (US 78)	NB (Von	Ohsen Road)	SB (Ro	oyle Road)	1.1
Condition	Measure	EBL	EBTR	WBL	WBTR	NBL	NBTR	SBL	NBTR	Intersection
AM Peak Hour										
2021 Eviating	LOS (Delay)	D (3	39.2)	C (3	30.1)	E (6	65.0)	D (4	11.2)	D (42.0)
2021 Existing	Synchro 95th Q	117'	#864'	58'	#410'	35'	#429'	111'	211'	D (42.9)
2028 No-Build	LOS (Delay)	F (10	09.8)	D (4	43.8)	F (9	99.8)	D (4	13.6)	F /70 0\
2020 NO-Bulla	Synchro 95th Q	#173'	#1144'	69'	#585'	41'	#595'	#178'	273'	E (79.9)
2028 Build	LOS (Delay)	F (1	19.6)	D (4	48.8)	F (1	07.3)	D (4	44.0)	F (86.0)
2020 Build	Synchro 95th Q	#200'	#1169'	71'	#651'	53'	#623'	#184'	275'	F (00.0)
2028 Build	LOS (Delay)	E (7	'3.2)	D (3	36.4)	F (1	07.3)	D (4	17.0)	E (66.7)
Improved	Synchro 95th Q	#153'	#1094'	68'	#550'	57'	#623'	#220'	293'	⊏ (00.7)
PM Peak Hour										
2024 Eviation	LOS (Delay)	C (3	34.7)	D (4	41.6)	C (;	34.8)	D (4	49.0)	D (40.4)
2021 Existing	Synchro 95th Q	116'	#628'	140'	#887'	51'	271'	96'	321'	D (40.4)
2028 No-Build	LOS (Delay)	F (10	03.2)	F (1	73.8)	C (;	32.6)	D (5	51.7)	F (107.6)
2020 NO-Bulla	Synchro 95th Q	#208'	#835'	#315'	#1149'	63'	330'	110'	408'	F (107.0)
2028 Build	LOS (Delay)	F (1	47.7)	F (2	05.4)	C (;	31.5)	D (4	42.4)	F (131.5)
2020 Build	Synchro 95th Q	#207'	#919'	#326'	#1190'	75'	341'	115'	417'	F (131.3)
2028 Build	LOS (Delay)	F (1	15.1)	F (1	47.4)	C (3	31.7)	D (5	51.5)	F (101.2)
Improved	Synchro 95th Q	#246'	#917'	#318'	#1127'	75'	#362'	117'	423'	1 (101.2)
	Existing Storage	125'		250'		250'		150'		

Notes:

- 1. Delay represented in sec/veh
- 2. # 95th percentile volume exceeds capacity, queue may be longer.

6 Conclusion

The proposed Elms Glen Residential Development is located on the southeast corner of US 78 at Von Ohsen Road in Charleston County, SC. The proposed residential development is planned to consist of 141 single family houses and 167 town houses. Based on the preliminary site plan, it is assumed that the project will provide access via two access points:

- One proposed full-movement driveway along Von Ohsen Road to form a fourth leg at the intersection with Dunmeyer Hill Road
- One existing full-movement driveway along US 78 that serves the EquipmentShare development.

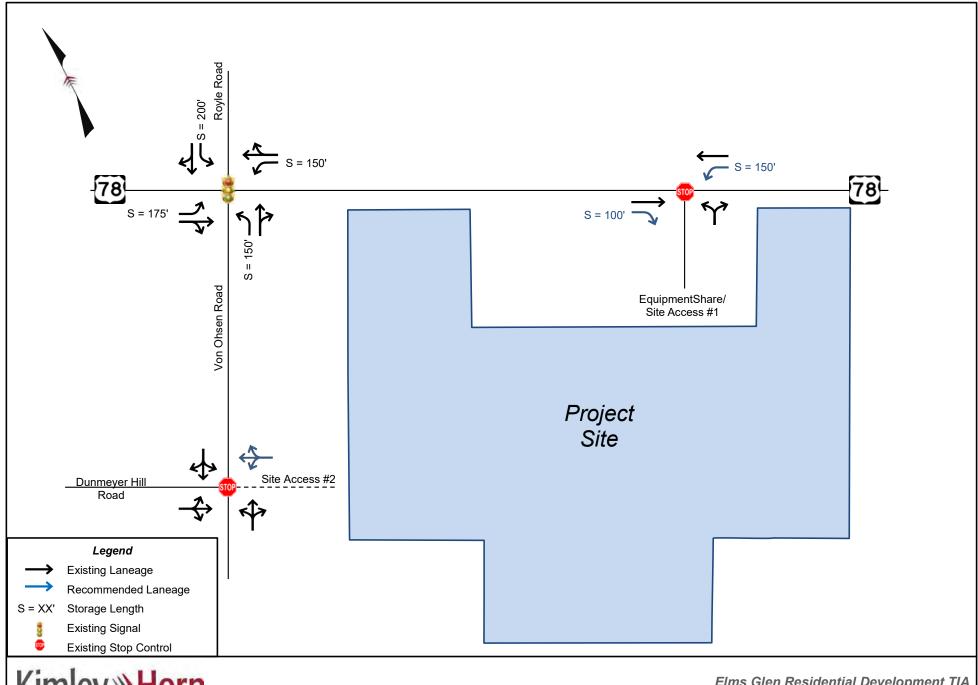
It was assumed that the development will be built and fully occupied by 2028. This TIA summarizes the results of traffic operations under 2021 Existing, 2028 No-Build, and 2028 Build conditions during the AM and PM peak hours at the following three study intersections:

- 1) EquipmentShare Access/Site Driveway #1at US 78 Unsignalized, full-movement
- 2) Von Ohsen Road at Dunmeyer Hill Road/Site Access #2 Unsignalized, full-movement
- 3) Von Ohsen Road/Royle Road at US 78 Signalized

Kimley-Horn was retained to determine the potential traffic impacts of this development and identify transportation improvements that may be required to accommodate these impacts in accordance with the guidelines set forth in the South Carolina Department of Transportation (SCDOT) Access and Roadside Management Standards (ARMS) Manual and SCDOT Roadway Design Manual. This report presents trip generation, trip distribution, capacity analyses, and recommendations for transportation improvements required to mitigate anticipated traffic demands produced by the subject development.

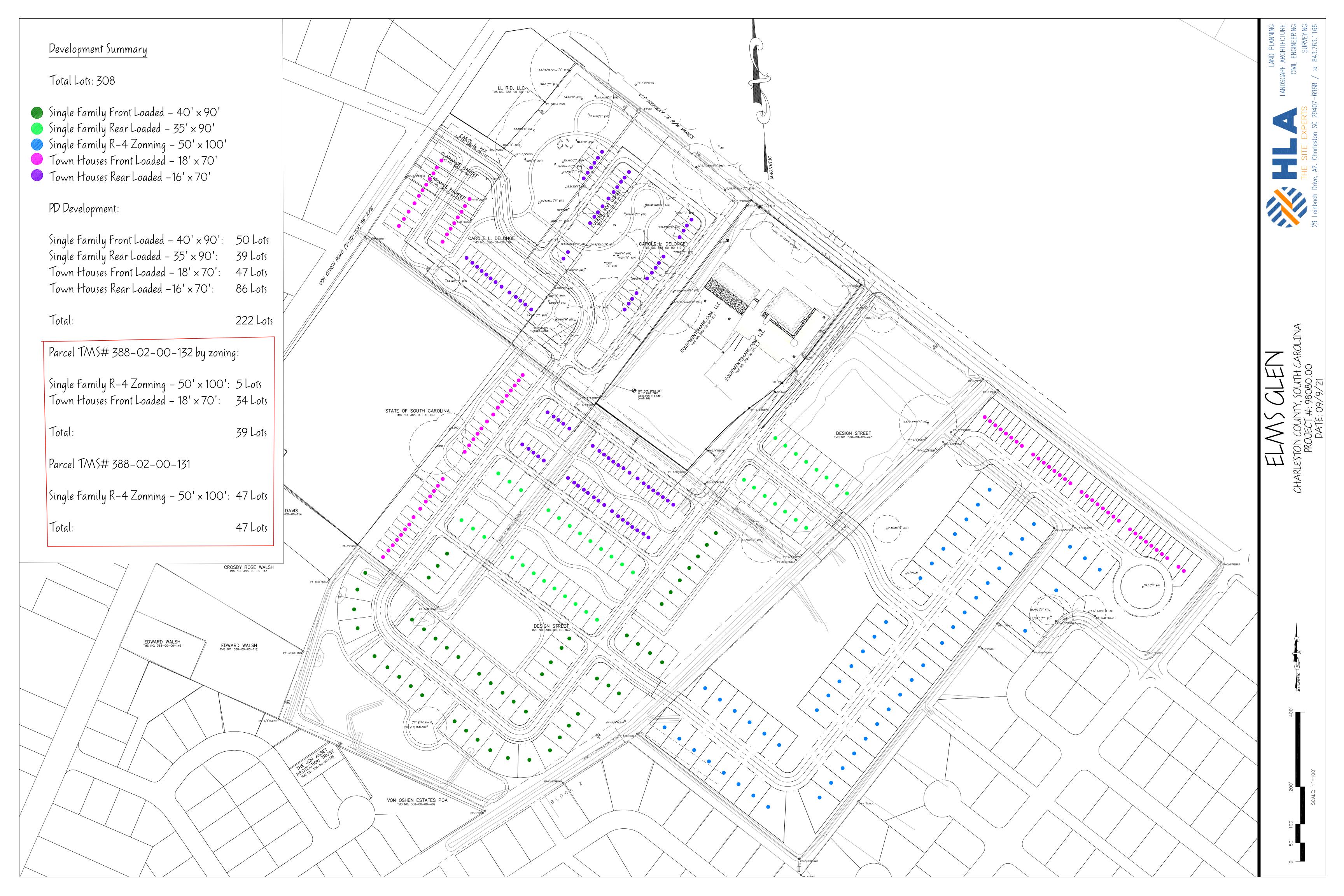
Based on the capacity analyses performed at each of the identified study intersections, along with review of the auxiliary turn-lane warrants contained herein, the following improvements have been identified to mitigate the impact of the proposed development on the adjacent street network under 2028 Build Conditions. Recommended lane geometry improvements can be seen in **Figure 9.**

EquipmentShare Access/Site Access #1 at US 78


- Construct a westbound left-turn lane along US 78. The westbound left-turn lane should be designed per SCDOT guidelines.
- Construct an eastbound right-turn lane along US 78. The eastbound right-turn lane should be designed per SCDOT Guidelines. The eastbound right-turn lane is an accordance with the Planned Unit Development (PUD) agreement.

Von Ohsen Road at Dunmeyer Hill Road/Site Access #2

Construct the site access with one egress lane and one ingress lane.


Von Ohsen Road/Royle Road at US 78

Optimize the traffic signal splits during the AM and PM peak hours.

Appendix A – Proposed Development Site Plan

Appendix B – Turning Movement Counts; Historic Traffic Growth

TURNING MOVEMENT COUNTS

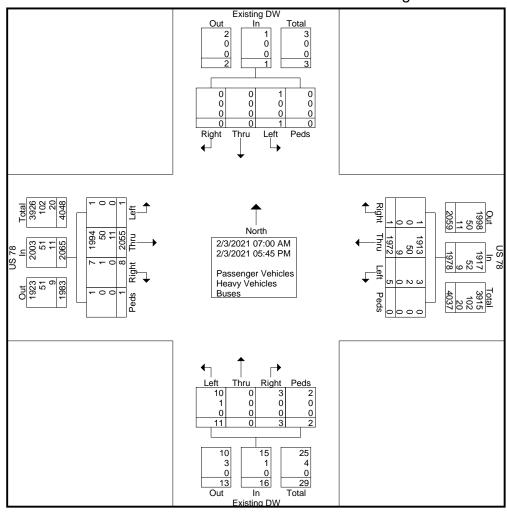
Obtained from Elms Glen TIA conducted by BIHL Engineering in May 2021

File Name: US 78 @ Existing DW's

Site Code:

Start Date : 2/3/2021

Page No : 1

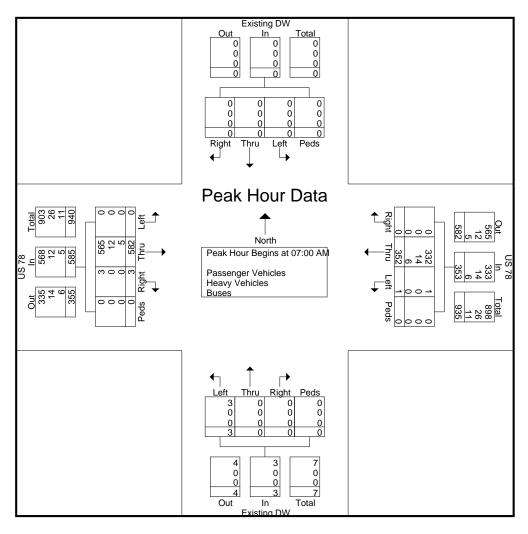

												J					
				G	roups P	rinted- F	assena	er Vehic	les - Hea	avv Vehi	cles - Bu	ıses					
		Existin				US	78			Éxistin	g DW			US			
		From				From				From				From			—
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
07:00 AM	0	0	0	0	1	66	0	0	0	0	0	0	0	150	1	0	218
07:15 AM	0	0	0	0	0	88	0	0	1	0	0	0	0	152	1	0	242
07:30 AM	0	0	0	0	0	105	0	0	1	0	0	0	0	155	0	0	261
07:45 AM	0	0	0	0	0	93	0	0	1	0	0	0	0	125	1	0	220
Total	0	0	0	0	1	352	0	0	3	0	0	0	0	582	3	0	941
08:00 AM	0	0	0	0	1	79	0	0	1	0	1	0	1	119	1	0	203
08:15 AM	0	0	0	0	0	82	1	0	0	0	0	0	0	111	2	0	196
08:30 AM	1	0	0	0	1	100	0	0	1	0	0	0	0	127	0	0	230
08:45 AM	0	0	0	0	0	90	0	0	0	0	0	1	0	95	0	0	186
Total	1	0	0	0	2	351	1	0	2	0	1	1	1	452	3	0	815
04:00 PM	0	0	0	0	0	165	0	0	1	0	1	0	0	124	0	0	291
04:15 PM	0	0	0	0	0	155	0	0	1	0	0	0	0	110	1	0	267
04:30 PM	0	0	0	0	1	156	0	0	0	0	0	0	0	127	1	0	285
04:45 PM	0	0	0	0	1_	157	0	0	0	0	0	0	0	132	0	0	290
Total	0	0	0	0	2	633	0	0	2	0	1	0	0	493	2	0	1133
05:00 PM	0	0	0	0	0	168	0	0	3	0	0	0	0	121	0	0	292
05:15 PM	0	0	0	0	0	146	0	0	0	0	1	0	0	130	0	0	277
05:30 PM	0	0	0	0	0	158	0	0	0	0	0	0	0	140	0	0	298
05:45 PM	0	0	0	0	0	164	0	0	1_	0	0	1	0	137	0	1	304
Total	0	0	0	0	0	636	0	0	4	0	1	1	0	528	0	1	1171
Grand Total	1	0	0	0	5	1972	1	0	11	0	3	2	1	2055	8	1	4060
Apprch %	100	0	0	0	0.3	99.7	0.1	0	68.8	0	18.8	12.5	0	99.5	0.4	0	
Total %	0	0	0	0	0.1	48.6	0	0	0.3	0	0.1	0	0	50.6	0.2	0	
Passenger Vehicles	1	0	0	0	3	1913	1	0	10	0	3	2	1	1994	7	1	3936
% Passenger Vehicles	100	0	0	0	60	97	100	0	90.9	0	100	100	100	97	87.5	100	96.9
Heavy Vehicles	0	0	0	0	2	50	0	0	1	0	0	0	0	50	1	0	104
% Heavy Vehicles	0	0	0	0	40	2.5	0	0	9.1	0	0	0	0	2.4	12.5	0	2.6
Buses	0	0	0	0	0	9	0	0	0	0	0	0	0	11	0	0	20
% Buses	0	0	0	0	0	0.5	0	0	0	0	0	0	0	0.5	0	0	0.5

Obtained from Elms Glen TIA conducted by BIHL Engineering in May 2021

File Name: US 78 @ Existing DW's

Site Code:

Start Date : 2/3/2021

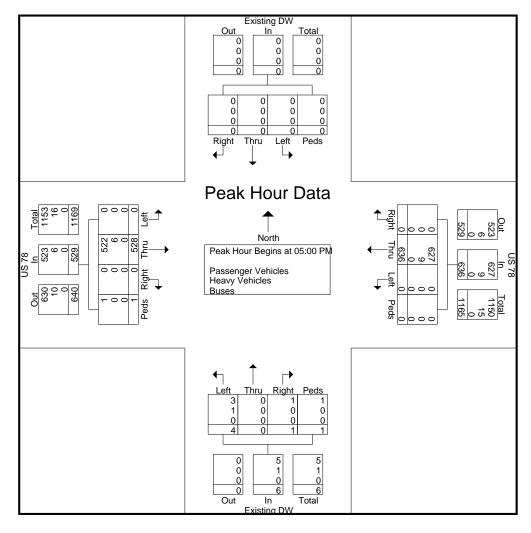

Obtained from Elms Glen TIA conducted by BIHL Engineering in May 2021

File Name: US 78 @ Existing DW's

Site Code:

Start Date : 2/3/2021

																					1
		Ex	isting	DW				US 78	3			E>	kisting	DW				US 78	3		1
		Fŗ	om No	orth			F	rom E	ast			Fr	rom Sc	uth			F	rom W	est		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From (07:00 A	AM to 0	8:45 AN	1 - Peal	k 1 of 1	1													
Peak Hour f	or Ent	ire Inte	ersect	ion Be	gins at	07:00	AM														
07:00 AM	0	0	0	0	0	1	66	0	0	67	0	0	0	0	0	0	150	1	0	151	218
07:15 AM	0	0	0	0	0	0	88	0	0	88	1	0	0	0	1	0	152	1	0	153	242
07:30 AM	0	0	0	0	0	0	105	0	0	105	1	0	0	0	1	0	155	0	0	155	261
07:45 AM	0	0	0	0	0	0	93	0	0	93	1	0	0	0	1	0	125	1_	0	126	220
Total Volume	0	0	0	0	0	1	352	0	0	353	3	0	0	0	3	0	582	3	0	585	941
% App. Total	0	0	0	0		0.3	99.7	0	0		100	0	0	0		0	99.5	0.5	0		
PHF	.000	.000	.000	.000	.000	.250	.838	.000	.000	.840	.750	.000	.000	.000	.750	.000	.939	.750	.000	.944	.901
Passenger Vehicles	0	0	0	0	0	1	332	0	0	333	3	0	0	0	3	0	565	3	0	568	904
% Passenger Vehicles							94.3										97.1				
Heavy Vehicles	0	0	0	0	0	0	14	0	0	14	0	0	0	0	0	0	12	0	0	12	26
% Heavy Vehicles	0	0	0	0	0	0	4.0	0	0	4.0	0	0	0	0	0	0	2.1	0	0	2.1	2.8
Buses	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	5	0	0	5	11
% Buses	0	0	0	0	0	0	1.7	0	0	1.7	0	0	0	0	0	0	0.9	0	0	0.9	1.2


Obtained from Elms Glen TIA conducted by BIHL Engineering in May 2021

File Name: US 78 @ Existing DW's

Site Code:

Start Date : 2/3/2021

			isting					US 78					cisting					US 78			
		F!	om No	orth				rom E	ast			Fr	om Sc	outh			-	rom W	est		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar								l													
Peak Hour f	or Ent	ire Int	ersect	ion Be	gins at	05:00	PM														
05:00 PM	0	0	0	0	0	0	168	0	0	168	3	0	0	0	3	0	121	0	0	121	292
05:15 PM	0	0	0	0	0	0	146	0	0	146	0	0	1	0	1	0	130	0	0	130	277
05:30 PM	0	0	0	0	0	0	158	0	0	158	0	0	0	0	0	0	140	0	0	140	298
05:45 PM	0	0	0	0	0	0	164	0	0	164	1	0	0	1	2	0	137	0	1	138	304
Total Volume	0	0	0	0	0	0	636	0	0	636	4	0	1	1	6	0	528	0	1	529	1171
% App. Total	0	0	0	0		0	100	0	0		66.7	0	16.7	16.7		0	99.8	0	0.2		
PHF	.000	.000	.000	.000	.000	.000	.946	.000	.000	.946	.333	.000	.250	.250	.500	.000	.943	.000	.250	.945	.963
Passenger Vehicles	0	0	0	0	0	0	627	0	0	627	3	0	1	1	5	0	522	0	1	523	1155
% Passenger Vehicles							98.6				75.0						98.9				
Heavy Vehicles	0	0	0	0	0	0	9	0	0	9	1	0	0	0	1	0	6	0	0	6	16
% Heavy Vehicles	0	0	0	0	0	0	1.4	0	0	1.4	25.0	0	0	0	16.7	0	1.1	0	0	1.1	1.4
Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

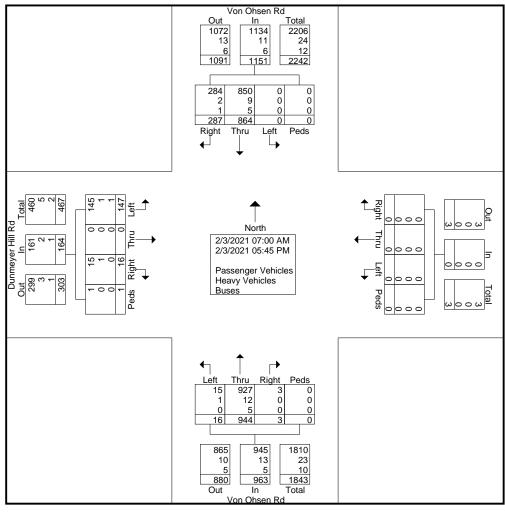
Obtained from Elms Glen TIA conducted by BIHL Engineering in May 2021

File Name: Von Ohsen Rd @ Dunmeyer Hill Rd

Site Code:

Start Date : 2/3/2021

Groups Printed- Passenger Vehic	les - Heav	Vehicles - Buses
		01 01

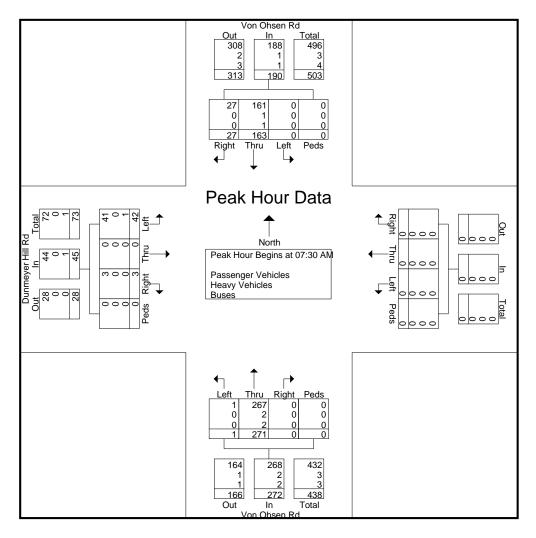

		Von Oh From				From	Eact			Von Oh From			С	unmeye From	er Hill Ro	I	
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
07:00 AM	0	23	4	0	0	0	0	0	0	58	0	0	4	0	0	0	89
07:15 AM	0	34	6	0	0	0	0	0	0	60	0	ō	8	0	1	0	109
07:30 AM	0	40	9	0	Ö	0	Ō	Ö	Ō	78	0	ō	11	Ō	1	0	139
07:45 AM	0	34	10	0	0	0	0	0	1	69	0	0	14	0	0	0	128
Total	0	131	29	0	0	0	0	0	1	265	0	0	37	0	2	0	465
08:00 AM	0	46	5	0	0	0	0	0	0	66	0	0	9	0	1	0	127
08:15 AM	0	43	3	0	0	0	0	0	0	58	0	0	8	0	1	0	113
08:30 AM	0	36	13	0	0	0	0	0	1	41	0	0	7	0	1	0	99
08:45 AM	0	40	8	0	0	0	0	0	1_	41	0	0	5	0	2	0	97
Total	0	165	29	0	0	0	0	0	2	206	0	0	29	0	5	0	436
04:00 PM	0	68	33	0	0	0	0	0	3	53	2	0	7	0	2	0	168
04:15 PM	0	65	21	0	0	0	0	0	4	58	1	0	10	0	0	0	159
04:30 PM	0	72	18	0	0	0	0	0	1	71	0	0	11	0	2	0	175
04:45 PM	0	60	33	0	0	0	0	0	0	60	0	0	10	0	1	0	164
Total	0	265	105	0	0	0	0	0	8	242	3	0	38	0	5	0	666
1																	
05:00 PM	0	80	40	0	0	0	0	0	3	44	0	0	15	0	0	0	182
05:15 PM	0	76	41	0	0	0	0	0	0	83	0	0	11	0	2	1	214
05:30 PM	0	70	27	0	0	0	0	0	0	39	0	0	7	0	1	0	144
05:45 PM	0	77	16	0	0	0	0	0	2	65	0	0	10	0	1_	0	171
Total	0	303	124	0	0	0	0	0	5	231	0	0	43	0	4	1	711
Grand Total	0	864	287	0	0	0	0	0	16	944	3	0	147	0	16	1	2278
Apprch %	0	75.1	24.9	0	0	0	0	0	1.7	98	0.3	ő	89.6	0	9.8	0.6	2270
Total %	0	37.9	12.6	0	0	0	0	0	0.7	41.4	0.5	0	6.5	0	0.7	0.0	
Passenger Vehicles	0	850	284	0	0	0	0	0	15	927	3	0	145	0	15	1	2240
% Passenger Vehicles	Ö	98.4	99	ő	0	Ö	Ö	0	93.8	98.2	100	ő	98.6	0	93.8	100	98.3
Heavy Vehicles	0	9	2	0	0	0	0	0	1	12	0	0	1	0	1	0	26
% Heavy Vehicles	0	1	0.7	0	0	0	Ö	0	6.2	1.3	0	0	0.7	0	6.2	0	1.1
Buses	0	<u>.</u> 5	1	0	0	0	0	0	0.2	5	0	0	1	0	0.2	0	12
% Buses	0	0.6	0.3	0	0	0	0	0	0	0.5	0	0	0.7	0	0	0	0.5

Obtained from Elms Glen TIA conducted by BIHL Engineering in May 2021

File Name: Von Ohsen Rd @ Dunmeyer Hill Rd

Site Code:

Start Date : 2/3/2021

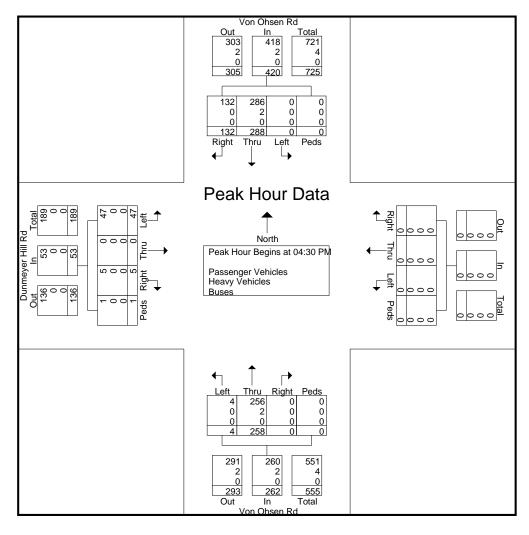

Obtained from Elms Glen TIA conducted by BIHL Engineering in May 2021

File Name: Von Ohsen Rd @ Dunmeyer Hill Rd

Site Code:

Start Date : 2/3/2021

																			= .		
			n Ohse										n Ohse					meyer			
		Fı	rom No	orth			F	rom E	ast			Fı	rom Sc	uth			F	rom W	est		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From (07:00 <i>F</i>	AM to 0	8:45 AN	1 - Pea	k 1 of 1	1													
Peak Hour f	or Ent	ire Int	ersect	tion Be	egins at	07:30	AM (
07:30 AM	0	40	9	0	49	0	0	0	0	0	0	78	0	0	78	11	0	1	0	12	139
07:45 AM	0	34	10	0	44	0	0	0	0	0	1	69	0	0	70	14	0	0	0	14	128
08:00 AM	0	46	5	0	51	0	0	0	0	0	0	66	0	0	66	9	0	1	0	10	127
08:15 AM	0	43	3	0	46	0	0	0	0	0	0	58	0	0	58	8	0	1	0	9	113
Total Volume	0	163	27	0	190	0	0	0	0	0	1	271	0	0	272	42	0	3	0	45	507
% App. Total	0	85.8	14.2	0		0	0	0	0		0.4	99.6	0	0		93.3	0	6.7	0		
PHF	.000	.886	.675	.000	.931	.000	.000	.000	.000	.000	.250	.869	.000	.000	.872	.750	.000	.750	.000	.804	.912
Passenger Vehicles	0	161	27	0	188	0	0	0	0	0	1	267	0	0	268	41	0	3	0	44	500
% Passenger Vehicles		98.8										98.5				97.6					
Heavy Vehicles	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	3
% Heavy Vehicles	0	0.6	0	0	0.5	0	0	0	0	0	0	0.7	0	0	0.7	0	0	0	0	0	0.6
Buses	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	1	0	0	0	1	4
% Buses	0	0.6	0	0	0.5	0	0	0	0	0	0	0.7	0	0	0.7	2.4	0	0	0	2.2	0.8


Obtained from Elms Glen TIA conducted by BIHL Engineering in May 2021

File Name: Von Ohsen Rd @ Dunmeyer Hill Rd

Site Code:

Start Date : 2/3/2021

			n Ohse										n Ohse					neyer			
		F	rom No	orth			F	rom E	ast			Fi	rom Sc	uth			F	rom W	est		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar																					
Peak Hour f	or Ent	ire Int	ersect	ion Be	egins at	04:30	PM														
04:30 PM	0	72	18	0	90	0	0	0	0	0	1	71	0	0	72	11	0	2	0	13	175
04:45 PM	0	60	33	0	93	0	0	0	0	0	0	60	0	0	60	10	0	1	0	11	164
05:00 PM	0	80	40	0	120	0	0	0	0	0	3	44	0	0	47	15	0	0	0	15	182
05:15 PM	0	76	41	0	117	0	0	0	0	0	0	83	0	0	83	11	0	2	1	14	214
Total Volume	0	288	132	0	420	0	0	0	0	0	4	258	0	0	262	47	0	5	1	53	735
% App. Total	0	68.6	31.4	0		0	0	0	0		1.5	98.5	0	0		88.7	0	9.4	1.9		
PHF	.000	.900	.805	.000	.875	.000	.000	.000	.000	.000	.333	.777	.000	.000	.789	.783	.000	.625	.250	.883	.859
Passenger Vehicles	0	286	132	0	418	0	0	0	0	0	4	256	0	0	260	47	0	5	1	53	731
% Passenger Vehicles		99.3										99.2									
Heavy Vehicles	0	2	0	0	2	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	4
% Heavy Vehicles	0	0.7	0	0	0.5	0	0	0	0	0	0	8.0	0	0	0.8	0	0	0	0	0	0.5
Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

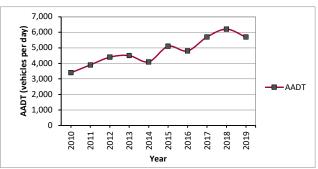
US 78 at Von Oshen Road SCDOT Count data from 2019

					Α	M Peak Hοι	ır					
Time	SBL	SBT	SBR	WBL	WBT	WBR	NBL	NBT	NBR	EBL	EBT	EBR
7	42	30	29	19	84	13	6	34	68	36	155	1
715	32	24	33	13	69	17	8	50	53	39	154	6
730	25	39	36	15	74	15	6	47	40	38	147	7
745	36	57	43	17	81	12	10	55	30	33	141	7
8	32	44	55	18	72	17	12	52	33	23	106	5
815	20	30	33	15	66	13	11	33	19	26	102	8
830	11	25	21	8	65	14	5	23	24	23	114	11
845	34	39	31	15	60	10	18	35	30	30	84	5

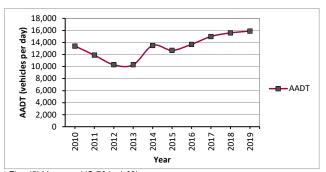
					P	M Peak Hou	ır					
4	20	37	35	39	124	23	9	39	20	31	78	4
415	25	44	37	43	115	28	11	53	24	31	80	6
430	25	46	38	33	120	26	9	32	12	38	86	4
445	25	52	32	35	108	8	7	56	11	39	66	2
5	23	50	31	25	122	7	4	35	18	30	124	1
515	25	55	54	56	135	15	9	42	16	44	115	0
530	24	46	31	55	127	15	12	41	15	30	100	1
545	30	52	42	38	131	18	12	54	17	26	96	5

US 78 at Von Oshen Road SCDOT Count data from 2019 grown at 3% for two years

									,	~		
					A	M Peak Hοι	ır					
Time	SBL	SBT	SBR	WBL	WBT	WBR	NBL	NBT	NBR	EBL	EBT	EBR
7	45	32	31	20	89	14	6	36	72	38	164	1
715	34	25	35	14	73	18	8	53	56	41	163	6
730	27	41	38	16	79	16	6	50	42	40	156	7
745	38	60	46	18	86	13	11	58	32	35	150	7
8	34	47	58	19	76	18	13	55	35	24	112	5
815	21	32	35	16	70	14	12	35	20	28	108	8
830	12	27	22	8	69	15	5	24	25	24	121	12
845	36	41	33	16	64	11	19	37	32	32	89	5


					Р	M Peak Hou	ır					
4	21	39	37	41	132	24	10	41	21	33	83	4
415	27	47	39	46	122	30	12	56	25	33	85	6
430	27	49	40	35	127	28	10	34	13	40	91	4
445	27	55	34	37	115	8	7	59	12	41	70	2
5	24	53	33	27	129	7	4	37	19	32	132	1
515	27	58	57	59	143	16	10	45	17	47	122	0
530	25	49	33	58	135	16	13	43	16	32	106	1
545	32	55	45	40	139	19	13	57	18	28	102	5

HISTORIC TRAFFIC GROWTH


<u>Annual Average Daily Traffic (AADT) from the</u> <u>South Carolina Department of Transportation (SCDOT)</u>

Station	555
Route	S- 734
Location	US 78 (HIGHWAY 78) TO S- 881
Location	(LINCOLNVILLE RD)
2010	3,400
2011	3,900
2012	4,400
2013	4,500
2014	4,100
2015	5,100
2016	4,800
2017	5,700
2018	6,200
2019	5,700

Annual Growth for Last Five (5) Years --- S- 734 is 2.2% Annual Growth for Last Ten (10) Years --- S- 734 is 5.3%

Station	140
Route	US 76
Location	US 17 ALT (N MAIN ST) TO County Line - CHARLESTON
2010	13,400
2011	11,900
2012	10,300
2013	10,300
2014	13,500
2015	12,700
2016	13,700
2017	15,000
2018	15,600
2019	15,900

Annual Growth for Last Five (5) Years --- US 76 is 4.6% Annual Growth for Last Ten (10) Years --- US 76 is 1.7%

Appendix C – Traffic Volume Development Worksheets

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

INTERSECTION: US 78 at Access #1/Equipment Share

COUNT DATE: February 3, 2021

Distribution

LAND USE

Project Trip

"PM PROJECT TRIPS"

PM TOTAL PROJECT TRIPS

PM 2028 BUILD-OUT TRAFFIC

Exiting

TYPE

Net New

AM PEAK HOUR FACTOR: 0.90 AM FUTURE PEAK HOUR FACTOR: 0.90 PM PEAK HOUR FACTOR: 0.96 PM FUTURE PEAK HOUR FACTOR: 0.96

					<u> AM</u>	Peak	<u>Hour</u>										
AM 2021 EXIST	ING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	s
AM Adjusted Turning	Movement Counts ¹	0	0	669	3	0	1	405	0	0	3	0	0	0	0	0	
AM Volume		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Peak Season Co	orrection Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1
AM 2021 EXIST	TING TRAFFIC	0	0	669	3	0	1	405	0	0	3	0	0	0	0	0	
AM Heavy Vehi	cle Percentage	3%	3%	2%	3%	3%	3%	4%	3%	3%	3%	3%	3%	3%	3%	3%	
AM 2028 NO-B	UILD TRAFFIC	EBU	EBL	ЕВТ	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	;
Years To	Buildout	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Annual Gro	owth Rate	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	- ;
AM 2028 NO-BUILD	TRAFFIC GROWTH	0	0	154	1	0	0	93	0	0	1	0	0	0	0	0	
AM 2028 NO-B	UILD TRAFFIC	0	0	823	4	0	1	498	0	0	4	0	0	0	0	0	
"SITE TRAFFIC D	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	,
Net New	Entering			0%	25%		45%	5%									
Distribution	Exiting			5%							25%		45%				
"AM PROJE		EBU	EBL	ЕВТ	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	
Project Trip	TYPE Net New	0	0	7	11	0	20	2	0	NBU 0	35	0	62 62	0	0 0	0	- ;
, , , , , , , , , , , , , , , , , , , 		0	0		11	U	20		0	U	35	- 0	62	0	U	U	
AM TOTAL DD	O IECT TRIBS	١ ،		7	44		20	2	•		25	•	62	۱ ۸	۸ ا	•	
AM TOTAL PR	OJECT TRIPS	0	0	7	11	0	20	2	0	0	35	0	62	0	0	0	
AM 2028 BUILD		0	0	830	11	0	20	500	0	0	35	0	62	0	0	0	
-	-OUT TRAFFIC				15		21										
AM 2028 BUILD	OUT TRAFFIC	0	0	830 EBT	15 PM EBR	0 Peak	21 Hour	500 WBT	0	0	39	0 NBT	62	0	0 SBL	0	
AM 2028 BUILD	-OUT TRAFFIC TING TRAFFIC Movement Counts ¹	0 EBU	0 EBL	830	15 PM	o Peak	21 Hour	500	0 WBR	0 NBU	39 NBL	0	62 NBR	0 SBU	0	0 SBT	
AM 2028 BUILD PM 2021 EXIST	-OUT TRAFFIC TING TRAFFIC Movement Counts ¹ Balancing	EBU	6 EBL 0	830 EBT 539	15 PM EBR 0	Peak WBU	21 Hour WBL	500 WBT 649	0 WBR 0	NBU	39 NBL 4	0 NBT	62 NBR	SBU 0	0 SBL 0	SBT	
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co	OUT TRAFFIC FING TRAFFIC Movement Counts ¹ Balancing Dirrection Factor	EBU 0 0 1.000	EBL 0 0 1.000	EBT 539 0 1.000	15 PM EBR 0 0 1.000	0 Peak WBU 0 0 1.000	21 Hour WBL 0 0 1.000	WBT 649 0 1.000	WBR 0 0 1.000	NBU 0 0 1.000	39 NBL 4 0 1.000	0 NBT 0 0 1.000	NBR 1 0 1.000	SBU 0 0 1.000	SBL 0 0 1.000	\$BT 0 0 1.000	
PM 2021 EXIST PM Adjusted Turning PM Volume	OUT TRAFFIC FING TRAFFIC Movement Counts ¹ Balancing Dirrection Factor	EBU 0 0	0 EBL 0 0	830 EBT 539	15 PM EBR 0	Peak WBU 0 0	21 Hour WBL 0 0	WBT 649 0	0 WBR 0	NBU 0 0	39 NBL 4 0	0 NBT 0	62 NBR 1 0	8BU 0 0	0 SBL 0	0 SBT 0	
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co	OUT TRAFFIC TING TRAFFIC Movement Counts ¹ Balancing borrection Factor	EBU 0 0 1.000	EBL 0 0 1.000	830 EBT 539 0 1.000	15 PM EBR 0 0 1.000	0 Peak WBU 0 0 1.000	21 Hour WBL 0 0 1.000	500 WBT 649 0 1.000	0 WBR 0 0 1.000	NBU 0 0 1.000 0	39 NBL 4 0 1.000	0 NBT 0 0 1.000	NBR 1 0 1.000	SBU 0 0 1.000 0	SBL 0 0 1.000 0	0 SBT 0 0 1.000	
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co PM 2021 EXIST	OUT TRAFFIC TING TRAFFIC Movement Counts ¹ Balancing prection Factor TING TRAFFIC cle Percentage	EBU 0 0 1.000 0 0 3%	EBL	EBT 539 0 1.000 539 3%	PM EBR 0 0 1.000 0	0 Peak WBU 0 1.000 0 3%	## Page 12	500 WBT 649 0 1.000 649	0 WBR 0 0 1.000	NBU 0 0 1.000	NBL 4 0 1.000	NBT 0 0 1.000	NBR 1 0 1.000	SBU 0 0 1.000	SBL 0 0 1.000	SBT 0 0 1.000	1
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co PM 2021 EXIST PM Heavy Vehi PM 2028 NO-B	OUT TRAFFIC TING TRAFFIC Movement Counts ¹ Balancing Direction Factor TING TRAFFIC cle Percentage	EBU 0 1,000 0 3% EBU	EBL 0 0 1.000 0 3% EBL	830 EBT 539 0 1.000 539 3% EBT	PM EBR 0 0 1.000 3% EBR	0 Peak WBU 0 0 1.000 0 3%	21 Hour WBL 0 0 1.000 0 3% WBL	500 WBT 649 0 1.000 649 1% WBT	0 WBR 0 0 1.000 0	NBU 0 0 1.000 0 3% NBU	NBL 4 0 1.000 4 3% NBL	0 NBT 0 0 1.000 0 3% NBT	NBR 1 0 1.000 1 3% NBR	SBU 0 0 1.000 0 3% SBU	SBL	\$BT 0 0 1.000 0 3% \$BT	1
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co PM 2021 EXIST PM Heavy Vehi PM 2028 NO-Bi Years To	OUT TRAFFIC FING TRAFFIC Movement Counts ¹ Balancing borrection Factor FING TRAFFIC Cle Percentage UILD TRAFFIC Buildout	EBU 0 0 1.000 0 3% EBU 7	EBL 0 0 1.000 3% EBL 7	830 EBT 539 0 1.000 539 3% EBT 7	PM EBR 0 0 1.000 0 3% EBR 7	0 Peak WBU 0 0 1.000 0 3% WBU 7	21 Hour WBL 0 0 1.000 0 3% WBL 7	500 WBT 649 0 1.000 649 1% WBT 7	0 WBR 0 1.000 0 3% WBR 7	NBU 0 0 1.000 3% NBU 7	39 NBL 4 0 1.000 4 3% NBL 7	0 NBT 0 0 1.000 3% NBT 7	NBR 1 0 1.000 1 3% NBR 7	SBU 0 0 1.000 3% SBU 7	SBL	\$BT 0 0 1.000 3% \$BT	1
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co PM 2021 EXIST PM Heavy Vehi PM 2028 NO-B	-OUT TRAFFIC FING TRAFFIC Movement Counts ¹ Balancing borrection Factor FING TRAFFIC Cle Percentage UILD TRAFFIC Buildout bowth Rate	EBU 0 1,000 0 3% EBU	EBL 0 0 1.000 0 3% EBL	830 EBT 539 0 1.000 539 3% EBT	PM EBR 0 0 1.000 3% EBR	0 Peak WBU 0 0 1.000 0 3%	21 Hour WBL 0 0 1.000 0 3% WBL	500 WBT 649 0 1.000 649 1% WBT	0 WBR 0 0 1.000 0	NBU 0 0 1.000 0 3% NBU	NBL 4 0 1.000 4 3% NBL	0 NBT 0 0 1.000 0 3% NBT	NBR 1 0 1.000 1 3% NBR	SBU 0 0 1.000 0 3% SBU	SBL	\$BT 0 0 1.000 0 3% \$BT	1
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co PM 2021 EXIST PM Heavy Vehi PM 2028 NO-BI Years To Annual Gre	-OUT TRAFFIC TING TRAFFIC Movement Counts ¹ Balancing prection Factor TING TRAFFIC cle Percentage UILD TRAFFIC Buildout bowth Rate TRAFFIC GROWTH	0 EBU 0 1.000 0 3% EBU 7 3.0%	EBL 0 1.000 3% EBL 7 3.0% 0	830 EBT 539 0 1.000 539 3% EBT 7 3.0% 124	15 PM EBR 0 0 1.000 0 3% EBR 7 3.0% 0	9 Peak WBU 0 1.000 3% WBU 7 3.0% 0	## Page 18	500 WBT 649 0 1.000 649 1% WBT 7 3.0% 149	0 WBR 0 1.000 0 3% WBR 7 3.0%	NBU 0 1.000 3% NBU 7 3.0%	39 NBL 4 0 1.000 4 NBL 7 3.0%	0 NBT 0 1.000 0 3% NBT 7 3.0%	NBR 1 0 1.000 1 3% NBR 7 3.0% 0	SBU 0 1.000 3% SBU 7 3.0%	SBL 0 1.000 3% SBL 7 3.0% 0	\$BT 0 1.000 3% \$BT 7 3.0%	1
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co PM 2021 EXIST PM Heavy Vehi PM 2028 NO-B Years To Annual Green	-OUT TRAFFIC TING TRAFFIC Movement Counts ¹ Balancing prection Factor TING TRAFFIC cle Percentage UILD TRAFFIC Buildout bowth Rate TRAFFIC GROWTH	BU 0 0 1.000 0 3% EBU 7 3.0%	EBL 0 1.000 0 EBL 7 3.0%	830 EBT 539 0 1.000 539 3% EBT 7 3.0%	PM EBR 0 1.000 0 3% EBR 7 3.0%	0 Peak WBU 0 1.000 0 3% WBU 7 3.0%	21 Hour WBL 0 1.000 0 3% WBL 7 3.0%	500 WBT 649 1.000 649 1% WBT 7 3.0%	0 0 0 1.000 0 3% WBR 7 3.0%	NBU 0 1.000 0 3% NBU 7 3.0%	39 NBL 4 3% NBL 7 3.0%	0 NBT 0 1.000 0 3% NBT 7 3.0%	NBR 1 0 1.000 1 3% NBR 7 3.0%	SBU 0 1.000 0 3% SBU 7 3.0%	SBL 0 1.000 0 SBL 7 3.0%	\$BT 0 1.000 0 3% \$BT 7 3.0%	1
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co PM 2021 EXIST PM Heavy Vehi PM 2028 NO-BI Years To Annual Gro PM 2028 NO-BUILD PM 2028 NO-BUILD PM 2028 NO-BUILD	OUT TRAFFIC TING TRAFFIC Movement Counts¹ Balancing Direction Factor TING TRAFFIC cle Percentage UILD TRAFFIC Buildout Dowth Rate TRAFFIC GROWTH UILD TRAFFIC	BU 0 0 1.000 0 3% EBU 7 3.0% 0	EBL 0 1.000 0 EBL 7 3.0% 0 0	830 EBT 539 0 1.000 539 3% EBT 7 3.0% 124	PM EBR 0 0 1.000 0 3% EBR 7 3.0% 0	0 Peak WBU 0 1.000 0 3% WBU 7 3.0% 0	## Page 12	500 WBT 649 0 1.000 649 1% WBT 7 3.0% 149	0 0 0 1.000 0 3% WBR 7 3.0% 0	NBU 0 1.000 0 3% NBU 7 3.0% 0	39 NBL 4 3% NBL 7 3.0% 1	0 NBT 0 1.000 0 3% NBT 7 3.0% 0	NBR 1 0 1.000 1 3% NBR 7 3.0% 0	SBU 0 1.000 0 3% SBU 7 3.0% 0	SBL	\$BT 0 0 1.000 0 \$SBT 7 3.0% 0	1
PM 2021 EXIST PM Adjusted Turning PM Volume Peak Season Co PM 2021 EXIST PM Heavy Vehi PM 2028 NO-BI Years To Annual Gro PM 2028 NO-BUILD PM 2028 NO-BI	OUT TRAFFIC TING TRAFFIC Movement Counts¹ Balancing Direction Factor TING TRAFFIC cle Percentage UILD TRAFFIC Buildout Dowth Rate TRAFFIC GROWTH UILD TRAFFIC	0 EBU 0 1.000 0 3% EBU 7 3.0%	EBL 0 1.000 3% EBL 7 3.0% 0	830 EBT 539 0 1.000 539 3% EBT 7 3.0% 124	15 PM EBR 0 0 1.000 0 3% EBR 7 3.0% 0	9 Peak WBU 0 1.000 3% WBU 7 3.0% 0	## Page 18	500 WBT 649 0 1.000 649 1% WBT 7 3.0% 149	0 WBR 0 1.000 0 3% WBR 7 3.0%	NBU 0 1.000 3% NBU 7 3.0%	39 NBL 4 0 1.000 4 NBL 7 3.0%	0 NBT 0 1.000 0 3% NBT 7 3.0%	NBR 1 0 1.000 1 3% NBR 7 3.0% 0	SBU 0 1.000 3% SBU 7 3.0%	SBL 0 1.000 3% SBL 7 3.0% 0	\$BT 0 1.000 3% \$BT 7 3.0%	1

5%

EBT

667

EBU | EBL

0

0

0

0

25%

22

22

27

0

0

0

0

0

EBR | WBU | WBL WBT WBR NBU | NBL

805

67

67

67

0

0

0

37

37

45%

NBR

39

39

40

SBU | SBL

0

0

0

0

SBT

0

SBR

0

0

0

NBT

0

0

0

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

Von Ohsen Road at Dunmeyer Hill Road/Site Access #2 February 3, 2021 INTERSECTION:

PM 2028 BUILD-OUT TRAFFIC

0

59

COUNT DATE: AM PEAK HOUR FACTOR: AM FUTURE PEAK HOUR FACTOR: 0.91 PM FUTURE PEAK HOUR FACTOR: 0.86 0.91 PM PEAK HOUR FACTOR: 0.86

					AM	Peak	<u>Hour</u>										
AM 2021 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnin	g Movement Counts ¹	0	48	0	3	0	0	0	0	0	1	312	0	0	0	187	31
AM Volum	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Season (Correction Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
AM 2021 EXIS	STING TRAFFIC	0	48	0	3	0	0	0	0	0	1	312	0	0	0	187	31
AM Heavy Veh	nicle Percentage	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	1%	3%	3%	3%	1%	3%
•	<u> </u>					WBU	WBL			NBU				SBU	SBL		
	BUILD TRAFFIC o Buildout	EBU 7	EBL 7	EBT 7	EBR 7	7 VVBU	7 7	WBT 7	WBR 7	7	NBL 7	NBT 7	NBR 7	7	7 3BL	SBT 7	SBR 7
	rowth Rate	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%
	TRAFFIC GROWTH	0	11	0	1	0.070	0.070	0	0	0.070	0.070	72	0	0.070	0.070	43	7
AM 2020 NO F	BUILD TRAFFIC											201		0			
AWI 2028 NO-E	SUILD TRAFFIC	0	59	0	4	0	0	0	0	0	1	384	0	<u> </u>	0	230	38
"SITE TRAFFIC LAND USE	DISTRUBUTION" TYPE	EBU	EBL	ЕВТ	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Net New	Entering	LBU	LDL	EDI	LDK	VVBU	VVDL	WDI	WOR	NBU	NDL	NDI	10%	360	20%	301	SDK
Distribution	Exiting						10%		20%				10%		20%		
	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR		WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Net New ROJECT TRIPS	0	0	0	0	0	14	0	28	0	0	0	4	0	9	0	0
AWITOTALP	ROJECT TRIPS	, U	_ U	U	U	0	14	U	28	0	0	U	4	0	9	U	U
AM 2028 BUILI	D-OUT TRAFFIC	0	59	0	4	0	14	0	28	0	1	384	4	0	9	230	38
							1.4		20								
DM 2024 EVIS	TING TRAFFIC	FRU			<u>PM</u>	Peak	Hour										
	STING TRAFFIC	EBU	EBL	ЕВТ	PM EBR	Peak wвu	Hour WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin	g Movement Counts ¹	0	EBL 48	EBT 0	PM EBR	Peak wbu	Hour WBL	WBT	WBR	NBU	NBL 4	NBT 263	NBR	SBU 0	SBL 0	SBT 294	SBR 135
PM Adjusted Turnin PM Volum		T	EBL	ЕВТ	PM EBR	Peak wвu	Hour WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin PM Volum Peak Season (g Movement Counts ¹ e Balancing Correction Factor	0 0 1.000	48 0 1.000	0 0 1.000	PM EBR 5 0 1.000	Peak WBU 0 0 1.000	WBL 0 0 1.000	0 0 1.000	0 0 1.000	NBU 0 0 1.000	NBL	NBT 263 0 1.000	0 0 1.000	SBU 0 0 1.000	SBL 0 0 1.000	SBT 294 0 1.000	SBR 135 0 1.000
PM Adjusted Turnin PM Volum Peak Season (g Movement Counts ¹ e Balancing	0	EBL 48 0	EBT 0 0	PM EBR 5 0	Peak WBU 0 0	Hour WBL	WBT 0 0	WBR 0 0	NBU 0 0	NBL 4 0	NBT 263 0	NBR 0 0	SBU 0 0	SBL	SBT 294 0	SBR 135 0
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS	g Movement Counts ¹ e Balancing Correction Factor	0 0 1.000	48 0 1.000	0 0 1.000	PM EBR 5 0 1.000	Peak WBU 0 0 1.000	WBL 0 0 1.000	0 0 1.000	0 0 1.000	NBU 0 0 1.000	NBL	NBT 263 0 1.000	0 0 1.000	SBU 0 0 1.000	SBL	SBT 294 0 1.000	SBR 135 0 1.000
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Ver	g Movement Counts ¹ e Balancing Correction Factor	0 0 1.000	EBL 48 0 1.000	EBT 0 0 1.000	PM EBR 5 0 1.000	WBU 0 0 1.000 0	WBL 0 0 1.000 0	WBT 0 0 1.000	WBR 0 0 1.000	NBU 0 0 1.000	NBL	NBT 263 0 1.000	NBR 0 0 1.000	SBU 0 0 1.000	SBL	SBT 294 0 1.000	SBR 135 0 1.000
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Vel	g Movement Counts ¹ e Balancing Correction Factor ETING TRAFFIC	0 0 1.000	EBL 48 0 1.000 48 3%	EBT 0 0 1.000 0 3%	PM EBR 5 0 1.000 5 3%	Peak WBU 0 0 1.000 0 3%	WBL 0 0 1.000 0	WBT 0 0 1.000 0 3%	WBR 0 0 1.000 0	NBU 0 0 1.000 0 3%	NBL 4 0 1.000	NBT 263 0 1.000 263	NBR 0 0 1.000	SBU 0 0 1.000 0 3%	SBL 0 0 1.000	SBT 294 0 1.000 294	SBR 135 0 1.000 135 3%
PM Adjusted Turnin PM Volum Peak Season C PM 2021 EXIS PM Heavy Vet PM 2028 NO-E Years T Annual G	g Movement Counts ¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC to Buildout rowth Rate	0 0 1.000 0 3% EBU	EBL 48 0 1.000 48 3% EBL	EBT 0 0 1.000 0 3% EBT	PM EBR 5 0 1.000 5 3% EBR	Peak WBU 0	WBL 0 0 1.000 0 3% WBL	WBT 0 0 1.000 0 3% WBT	WBR 0 0 1.000 0 3% WBR	NBU 0 0 1.000 1.000	NBL	NBT 263 0 1.000 263 1% NBT	NBR 0 0 1.000 0 3% NBR	SBU 0 0 1.000 1.000 3% SBU	SBL	\$BT 294 0 1.000 294 1% \$BT	SBR 135 0 1.000 135 3% SBR
PM Adjusted Turnin PM Volum Peak Season C PM 2021 EXIS PM Heavy Vet PM 2028 NO-E Years T Annual G	g Movement Counts ¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC to Buildout	0 0 1.000 0 3% EBU	EBL 48 0 1.000 48 3% EBL 7	EBT 0 0 1.000 0 3% EBT 7	PM EBR 5 0 1.000 5 3% EBR 7	Peak WBU 0 1.000 3% WBU 7	WBL 0 0 1.000 0 3% WBL 7	WBT 0 0 1.000 0 3% WBT 7	WBR 0 0 1.000 0 3% WBR 7	NBU 0 0 1.000 0 3% NBU 7	NBL 4 0 1.000 4 3% NBL 7	NBT 263 0 1.000 263 1% NBT 7	NBR 0 0 1.000 0 3% NBR 7	SBU 0 0 1.000 1.000 3% SBU 7	SBL	\$BT 294 0 1.000 294 1% \$BT 7	SBR 135 0 1.000 135 3% SBR 7
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Ver PM 2028 NO-E Years To Annual G PM 2028 NO-BUILD	g Movement Counts ¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC to Buildout rowth Rate	0 1.000 0 3% EBU 7 3.0%	EBL 48 0 1.000 48 3% EBL 7 3.0%	EBT 0 0 1.000 0 3% EBT 7 3.0%	PM EBR 5 0 1.000 5 3% EBR 7 3.0%	Peak WBU 0 0 1.000 0 3% WBU 7 3.0%	WBL 0 0 1.000 0 3% WBL 7 3.0%	WBT 0 0 1.000 0 3% WBT 7 3.0%	WBR 0 0 1.000 0 3% WBR 7 3.0%	NBU 0 0 1.000 0 3% NBU 7 3.0%	NBL	NBT 263 0 1.000 263 1% NBT 7 3.0%	NBR 0 0 1.000 0 3% NBR 7 3.0%	SBU 0 0 1.000 3% SBU 7 3.0%	SBL	\$BT 294 0 1.000 294 1% \$BT 7 3.0%	SBR 135 0 1.000 135 3% SBR 7 3.0%
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Ver PM 2028 NO-E PM 2028 NO-BUILD PM 2028 NO-E	g Movement Counts¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC o Buildout rowth Rate D TRAFFIC GROWTH	0 0 1.000 0 3% EBU 7 3.0%	EBL 48 0 1.000 48 3% EBL 7 3.0% 11	EBT 0 0 1.000 0 3% EBT 7 3.0% 0	EBR 5 0 1.000 5 3% EBR 7 3.0% 1	Peak WBU 0 0 1.000 3% WBU 7 3.0% 0	WBL	WBT 0 0 1.000 0 3% WBT 7 3.0% 0	WBR 0 0 1.000 0 3% WBR 7 3.0% 0	NBU 0 0 1.000 0 3% NBU 7 3.0% 0	NBL	NBT 263 0 1.000 263 1% NBT 7 3.0% 60	NBR 0 0 1.000 0 3% NBR 7 3.0% 0	SBU 0 0 1.000 3% SBU 7 3.0% 0	SBL	294 0 1.000 294 1% SBT 7 3.0% 68	SBR 135 0 1.000 135 3% SBR 7 3.0% 31
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Vel PM 2028 NO-E Years To Annual G PM 2028 NO-BUILD PM 2028 NO-E "SITE TRAFFIC	g Movement Counts¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC o Buildout rrowth Rate D TRAFFIC GROWTH	0 0 1.000 0 3% EBU 7 3.0%	EBL 48 0 1.000 48 EBL 7 3.0% 11 59	EBT 0 0 1.000 0 3% EBT 7 3.0% 0	EBR 5 0 1.000 5 3% EBR 7 3.0% 1	Peak WBU 0 0 1.000 0 3% WBU 7 3.0% 0	WBL 0 0 1.000 0 WBL 7 3.0% 0 0 0 0 0 0 0 0 0	WBT 0 0 1.000 0 3% WBT 7 3.0% 0	WBR 0 0 1.000 0 3% WBR 7 3.0% 0	NBU 0 0 1.000 3% NBU 7 3.0% 0	NBL	NBT 263 0 1.000 263 1% NBT 7 3.0% 60	NBR 0 0 1.000 0 3% NBR 7 3.0% 0	SBU 0 0 1.000 3% SBU 7 3.0% 0	SBL	294 0 1.000 294 1% SBT 7 3.0% 68	SBR 135 0 1.000 135 3% SBR 7 3.0% 31
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Ver PM 2028 NO-E PM 2028 NO-BUILD PM 2028 NO-E	g Movement Counts¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC o Buildout rowth Rate D TRAFFIC GROWTH BUILD TRAFFIC	0 0 1.000 0 3% EBU 7 3.0%	EBL 48 0 1.000 48 3% EBL 7 3.0% 11	EBT 0 0 1.000 0 3% EBT 7 3.0% 0	PM EBR 5 0 1.000 5 3% EBR 7 3.0% 1	Peak WBU 0 0 1.000 3% WBU 7 3.0% 0	WBL 0 0 1.000 3% WBL 7 3.0% 0	WBT 0 0 1.000 0 3% WBT 7 3.0% 0	WBR 0 0 1.000 0 3% WBR 7 3.0% 0	NBU 0 0 1.000 0 3% NBU 7 3.0% 0	NBL 4 0 1.000 4	NBT 263 0 1.000 263 1% NBT 7 3.0% 60	NBR 0 0 1.000 0 3% NBR 7 3.0% 0	SBU 0 0 1.000 1.000 0 SBU 7 3.0% 0	SBL	294 0 1.000 294 1% SBT 7 3.0% 68	SBR 135 0 1.000 135 3% SBR 7 3.0% 31
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Vel PM 2028 NO-E Years To Annual G PM 2028 NO-BUILD PM 2028 NO-E "SITE TRAFFIC LAND USE	g Movement Counts¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC o Buildout rowth Rate D TRAFFIC GROWTH BUILD TRAFFIC DISTRUBUTION" TYPE	0 0 1.000 0 3% EBU 7 3.0%	EBL 48 0 1.000 48 EBL 7 3.0% 11 59	EBT 0 0 1.000 0 3% EBT 7 3.0% 0	PM EBR 5 0 1.000 5 3% EBR 7 3.0% 1	Peak WBU 0 0 1.000 0 3% WBU 7 3.0% 0	WBL 0 0 1.000 0 WBL 7 3.0% 0 0 0 0 0 0 0 0 0	WBT 0 0 1.000 0 3% WBT 7 3.0% 0	WBR 0 0 1.000 0 3% WBR 7 3.0% 0	NBU 0 0 1.000 3% NBU 7 3.0% 0	NBL 4 0 1.000 4	NBT 263 0 1.000 263 1% NBT 7 3.0% 60	NBR 0 0 1.000 0 3% NBR 7 3.0% 0	SBU 0 0 1.000 1.000 0 SBU 7 3.0% 0	SBL 0 0 1.000 0 SBL 7 3.0% 0 0 0 SBL	294 0 1.000 294 1% SBT 7 3.0% 68	SBR 135 0 1.000 135 3% SBR 7 3.0% 31
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Vef PM 2028 NO-E Years Ti Annual G PM 2028 NO-BUILD PM 2028 NO-BUILD "SITE TRAFFIC LAND USE Net New Distribution	g Movement Counts¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC o Buildout rowth Rate D TRAFFIC GROWTH BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting	0 0 1.000 0 3% EBU 7 3.0%	EBL 48 0 1.000 48 EBL 7 3.0% 11 59	EBT 0 0 1.000 0 3% EBT 7 3.0% 0	PM EBR 5 0 1.000 5 3% EBR 7 3.0% 1	Peak WBU 0 0 1.000 0 3% WBU 7 3.0% 0	WBL 0 0 1.000 0 WBL 7 3.0% 0 0 WBL 0 WBL 0 WBL 0 WBL 0 WBL 0	WBT 0 0 1.000 0 3% WBT 7 3.0% 0	WBR 0 0 1.000 0 3% WBR 7 3.0% 0	NBU 0 0 1.000 3% NBU 7 3.0% 0	NBL 4 0 1.000 4	NBT 263 0 1.000 263 1% NBT 7 3.0% 60	NBR 0 0 1.000 0 3% NBR 7 3.0% 0	SBU 0 0 1.000 1.000 0 SBU 7 3.0% 0	SBL	294 0 1.000 294 1% SBT 7 3.0% 68	SBR 135 0 1.000 135 3% SBR 7 3.0% 31
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Vef PM 2028 NO-E Years Ti Annual G PM 2028 NO-BUILD PM 2028 NO-BUILD "SITE TRAFFIC LAND USE Net New Distribution	g Movement Counts¹ e Balancing Correction Factor STING TRAFFIC DICTING TRAFFIC BUILD TRAFFIC DICTING TRAF	0 0 1.000 0 3% EBU 7 3.0%	EBL 48 0 1.000 48 EBL 7 3.0% 11 59	EBT 0 0 1.000 0 3% EBT 7 3.0% 0	PM EBR 5 0 1.000 5 3% EBR 7 3.0% 1	Peak WBU 0 0 1.000 0 3% WBU 7 3.0% 0 0 WBU WBU 0 0	WBL 0 0 1.000 0 WBL 7 3.0% 0 0 WBL 0 WBL 0 WBL 0 WBL 0 WBL 0	WBT 0 0 1.000 0 3% WBT 7 3.0% 0	WBR 0 0 1.000 0 3% WBR 7 3.0% 0	NBU 0 0 1.000 3% NBU 7 3.0% 0	NBL 4 0 1.000 4	NBT 263 0 1.000 263 1% NBT 7 3.0% 60	NBR 0 0 1.000 0 3% NBR 7 3.0% 0	SBU 0 0 1.000 1.000 0 SBU 7 3.0% 0	SBL	294 0 1.000 294 1% SBT 7 3.0% 68	SBR 135 0 1.000 135 3% SBR 7 3.0% 31
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Ver PM 2028 NO-E Years Tr Annual G PM 2028 NO-BUILD PM 2028 NO-BUILD PM 2028 NO-E "SITE TRAFFIC LAND USE Net New Distribution	g Movement Counts¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC O Buildout rowth Rate O TRAFFIC GROWTH BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting ECT TRIPS"	0 0 1.000 1.000 0 3% EBU 7 3.0% 0	EBL 48 0 1.000 48 EBL 7 3.0% 11 59 EBL	EBT 0 0 1.000 0 3% EBT 7 3.0% 0	PM EBR 5 0 1.000 5 3% EBR 7 3.0% 1	Peak WBU 0 0 1.000 0 3% WBU 7 3.0% 0 0 WBU WBU 0 0	Hour 0 0 1.000 3% WBL 7 3.0% 0 0 WBL 7 3.0%	WBT 0 1.000 0 3% WBT 7 3.0% 0	WBR 0 0 1.000 0 3% WBR 7 3.0% 0	NBU 0 0 1.000 1.000 0 NBU 7 3.0% 0 0 NBU	NBL 4 0 1.000 4	NBT 263 0 1.000 263 1% NBT 7 3.0% 60 323	NBR 0 0 1.000 0 3% NBR 7 3.0% 0 0 NBR 10%	SBU 0 0 1.000 1.000 3% SBU 7 3.0% 0 0 SBU	SBL 0 0 1.000 3% SBL 7 3.0% 0 0 SBL 20%	\$BT 294 0 1.000 294 1% \$BT 7 3.0% 68 362 \$BT	SBR 135 0 1.000 135 3% SBR 7 3.0% 31 166
PM Adjusted Turnin PM Volum Peak Season (PM 2021 EXIS PM Heavy Vet PM 2028 NO-E Years To Annual G PM 2028 NO-BUILD PM 2028 NO-BUILD "SITE TRAFFIC LAND USE Net New Distribution "PM PROJ LAND USE Project Trip	g Movement Counts¹ e Balancing Correction Factor STING TRAFFIC nicle Percentage BUILD TRAFFIC O Buildout rowth Rate O TRAFFIC GROWTH BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting ECT TRIPS" TYPE	0 0 1.000 1.000 0 3% EBU 7 3.0% 0	EBL 48 0 1.000 48 EBL 7 3.0% 11 EBL EBL EBL	EBT 0 1.000 1.000 3% EBT 7 3.0% 0 EBT	PM EBR 5 0 1.000 5 3% EBR 7 3.0% 1 6 EBR	Peak	Hour 0 0 1.000 3% WBL 7 3.0% 0 0 WBL 7 3.0%	WBT 0 1.000 1.000 3% WBT 7 3.0% 0 WBT	WBR 0 0 1.000 0 3% WBR 7 3.0% 0 0 WBR	NBU 0 0 1.000 1.000 0 NBU 7 3.0% 0 NBU NBU	NBL 4 0 1.000 4	NBT 263 0 1.000 263 1% NBT 7 3.0% 60 323 NBT	NBR 0 0 1.000 0 3% NBR 7 3.0% 0 0 NBR 10%	SBU 0 0 1.000 1.000 3% SBU 7 3.0% 0 SBU SBU	SBL 0 0 1.000 SBL 7 3.0% 0 0 SBL 20% SBL 20% SBL SBL SBL SBL	\$BT 294 0 1.000 294 1% \$BT 7 3.0% 68 362 \$BT	SBR 135 0 1.000 135 3% SBR 7 3.0% 31 166 SBR SBR

0

17 0 323

0 29

15

166

362

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

US 78 at Royle Road/Von Ohsen Road January 1, 2019 INTERSECTION:

COUNT DATE:

PM 2028 BUILD-OUT TRAFFIC

0 171

598

24 0 233

690

75 0 58

228

90 0 140

207

271

AM FUTURE PEAK HOUR FACTOR: 0.97 PM FUTURE PEAK HOUR FACTOR: 0.91 AM PEAK HOUR FACTOR: 0.97 PM PEAK HOUR FACTOR: 0.91

				AM	Peak	<u>Hour</u>										
AM 2021 EXISTING TRAFFIC	EBU	EBL	ЕВТ	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning Movement Counts ¹	0	154	633	21	0	68	327	61	0	31	197	202	0	144	158	150
AM Volume Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Season Correction Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
AM 2021 EXISTING TRAFFIC	0	154	633	21	0	68	327	61	0	31	197	202	0	144	158	150
AM Heavy Vehicle Percentage	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%
AM 2028 NO-BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Years To Buildout	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Annual Growth Rate	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%
AM 2028 NO-BUILD TRAFFIC GROWTH	0	35	146	5	0	16	75	14	0	7	45	46	0	33	36	34
AM 2028 NO-BUILD TRAFFIC	0	189	779	26	0	84	402	75	0	38	242	248	0	177	194	184
"SITE TRAFFIC DISTRUBUTION"																
LAND USE TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Net New Entering			20%	10%		5%								5%	5%	
Distribution Exiting	_						20%	5%		10%	5%	5%				
"AM PROJECT TRIPS"																
LAND USE TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip Net New	0	0	9	5	0	2	28	7	0	14	7	7	0	2	2	0
AM TOTAL PROJECT TRIPS	0	0	9	5	0	2	28	7	0	14	7	7	0	2	2	0
AM 2028 BUILD-OUT TRAFFIC	0	189	788	31	0	86	430	82	0	52	249	255	0	179	196	184
					Peak											
PM 2021 EXISTING TRAFFIC	EBU	EBL	ЕВТ	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning Movement Counts ¹	0	139	462	EBR 7	WBU	WBL 184	546	58	0	40	182	70	0	108	215	168
PM Adjusted Turning Movement Counts ¹ PM Volume Balancing	0	139 0	462 0	EBR 7 0	WBU 0 0	WBL 184 0	546 0	58 0	0	40 0	182 0	70 0	0	108	215 0	168 0
PM Adjusted Turning Movement Counts ¹	0	139	462	EBR 7	WBU	WBL 184	546	58	0	40	182	70	0	108	215	168
PM Adjusted Turning Movement Counts ¹ PM Volume Balancing	0	139 0	462 0	EBR 7 0	WBU 0 0	WBL 184 0	546 0	58 0	0	40 0	182 0	70 0	0	108	215 0	168 0
PM Adjusted Turning Movement Counts ¹ PM Volume Balancing Peak Season Correction Factor	0 0 1.000	139 0 1.000	462 0 1.000	7 0 1.000	0 0 1.000	WBL 184 0 1.000	546 0 1.000	58 0 1.000	0 0 1.000	40 0 1.000	182 0 1.000	70 0 1.000	0 0 1.000	108 0 1.000	215 0 1.000	168 0 1.000
PM Adjusted Turning Movement Counts ¹ PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC	0 0 1.000	139 0 1.000	462 0 1.000 462	7 0 1.000	0 0 1.000	WBL 184 0 1.000	546 0 1.000 546	58 0 1.000	0 0 1.000	40 0 1.000	182 0 1.000	70 0 1.000	0 0 1.000	108 0 1.000	215 0 1.000 215	168 0 1.000
PM Adjusted Turning Movement Counts ¹ PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout	0 0 1.000 0 3% EBU	139 0 1.000 139 3% EBL	462 0 1.000 462 3% EBT	7 0 1.000 7 3% EBR 7	WBU 0 0 1.000 0 3% WBU 7	184 0 1.000 184 3% WBL	546 0 1.000 546 3% WBT 7	58 0 1.000 58 3% WBR	0 0 1.000 0 3% NBU	40 0 1.000 40 3% NBL 7	182 0 1.000 182 3% NBT	70 0 1.000 70 3% NBR 7	0 0 1.000 0 3% SBU	108 0 1.000 108 3% SBL 7	215 0 1.000 215 3% SBT	168 0 1.000 168 3% SBR
PM Adjusted Turning Movement Counts ¹ PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout Annual Growth Rate	0 1.000 0 3% EBU 7 3.0%	139 0 1.000 139 3% EBL 7 3.0%	462 0 1.000 462 3% EBT 7 3.0%	7 0 1.000 7 3% EBR 7 3.0%	WBU 0 0 1.000 0 3% WBU 7 3.0%	184 0 1.000 184 3% WBL 7 3.0%	546 0 1.000 546 3% WBT 7 3.0%	58 0 1.000 58 3% WBR 7 3.0%	0 0 1.000 0 3% NBU 7 3.0%	40 0 1.000 40 3% NBL 7 3.0%	182 0 1.000 182 3% NBT 7 3.0%	70 0 1.000 70 3% NBR 7 3.0%	0 0 1.000 0 3% SBU 7 3.0%	108 0 1.000 108 3% SBL 7 3.0%	215 0 1.000 215 3% SBT 7 3.0%	168 0 1.000 168 3% SBR 7 3.0%
PM Adjusted Turning Movement Counts ¹ PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout	0 0 1.000 0 3% EBU	139 0 1.000 139 3% EBL	462 0 1.000 462 3% EBT	7 0 1.000 7 3% EBR 7	WBU 0 0 1.000 0 3% WBU 7	184 0 1.000 184 3% WBL	546 0 1.000 546 3% WBT 7	58 0 1.000 58 3% WBR	0 0 1.000 0 3% NBU	40 0 1.000 40 3% NBL 7	182 0 1.000 182 3% NBT	70 0 1.000 70 3% NBR 7	0 0 1.000 0 3% SBU	108 0 1.000 108 3% SBL 7	215 0 1.000 215 3% SBT	168 0 1.000 168 3% SBR
PM Adjusted Turning Movement Counts ¹ PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout Annual Growth Rate	0 1.000 0 3% EBU 7 3.0%	139 0 1.000 139 3% EBL 7 3.0%	462 0 1.000 462 3% EBT 7 3.0%	7 0 1.000 7 3% EBR 7 3.0%	WBU 0 0 1.000 0 3% WBU 7 3.0%	184 0 1.000 184 3% WBL 7 3.0%	546 0 1.000 546 3% WBT 7 3.0%	58 0 1.000 58 3% WBR 7 3.0%	0 0 1.000 0 3% NBU 7 3.0%	40 0 1.000 40 3% NBL 7 3.0%	182 0 1.000 182 3% NBT 7 3.0%	70 0 1.000 70 3% NBR 7 3.0%	0 0 1.000 0 3% SBU 7 3.0%	108 0 1.000 108 3% SBL 7 3.0%	215 0 1.000 215 3% SBT 7 3.0%	168 0 1.000 168 3% SBR 7 3.0%
PM Adjusted Turning Movement Counts PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout Annual Growth Rate PM 2028 NO-BUILD TRAFFIC GROWTH	0 0 1.000 0 3% EBU 7 3.0% 0	139 0 1.000 139 3% EBL 7 3.0% 32	462 0 1.000 462 3% EBT 7 3.0%	### Figure 1.000 ### ### ### ### ### ### ### ### ###	WBU	WBL 184 0 1.000 184 3% WBL 7 3.0% 42	546 0 1.000 546 3% WBT 7 3.0% 126	58 0 1.000 58 3% WBR 7 3.0%	0 0 1.000 0 3% NBU 7 3.0% 0	40 0 1.000 40 3% NBL 7 3.0% 9	182 0 1.000 182 3% NBT 7 3.0% 42	70 0 1.000 70 3% NBR 7 3.0%	0 0 1.000 0 3% SBU 7 3.0% 0	108 0 1.000 108 3% SBL 7 3.0% 25	215 0 1.000 215 3% SBT 7 3.0% 49	168 0 1.000 168 3% SBR 7 3.0%
PM Adjusted Turning Movement Counts ¹ PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout Annual Growth Rate PM 2028 NO-BUILD TRAFFIC GROWTH PM 2028 NO-BUILD TRAFFIC	0 0 1.000 0 3% EBU 7 3.0%	139 0 1.000 139 3% EBL 7 3.0% 32	462 0 1.000 462 3% EBT 7 3.0%	### Figure 1.000 ### ### ### ### ### ### ### ### ###	WBU 0 1.000 1.000 3% WBU 7 3.0% 0	WBL 184 0 1.000 184 3% WBL 7 3.0% 42	546 0 1.000 546 3% WBT 7 3.0% 126	58 0 1.000 58 3% WBR 7 3.0%	0 0 1.000 0 3% NBU 7 3.0%	40 0 1.000 40 3% NBL 7 3.0% 9	182 0 1.000 182 3% NBT 7 3.0% 42	70 0 1.000 70 3% NBR 7 3.0%	0 0 1.000 0 3% SBU 7 3.0%	108 0 1.000 108 3% SBL 7 3.0% 25	215 0 1.000 215 3% SBT 7 3.0% 49	168 0 1.000 168 3% SBR 7 3.0%
PM Adjusted Turning Movement Counts PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout Annual Growth Rate PM 2028 NO-BUILD TRAFFIC GROWTH PM 2028 NO-BUILD TRAFFIC GROWTH	0 0 1.000 0 3% EBU 7 3.0% 0	139 0 1.000 139 3% EBL 7 3.0% 32	462 0 1.000 462 3% EBT 7 3.0% 106	EBR 7 0 1.000 7 3% EBR 7 3.0% 2	WBU	WBL 184 0 1.000 184 3% WBL 7 3.0% 42	546 0 1.000 546 3% WBT 7 3.0% 126 672	58 0 1.000 58 3% WBR 7 3.0% 13	0 0 1.000 0 3% NBU 7 3.0% 0	40 0 1.000 1.000 40 NBL 7 3.0% 9 49 NBL NBL NBL NBL	182 0 1.000 182 3% NBT 7 3.0% 42 224	70 0 1.000 70 3% NBR 7 3.0% 16	0 0 1.000 0 3% SBU 7 3.0% 0	108 0 1.000 108 3% SBL 7 3.0% 25	215 0 1.000 215 3% SBT 7 3.0% 49 264	168 0 1.000 168 3% SBR 7 3.0% 39
PM Adjusted Turning Movement Counts¹ PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout Annual Growth Rate PM 2028 NO-BUILD TRAFFIC GROWTH PM 2028 NO-BUILD TRAFFIC GROWTH PM 2028 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION" LAND USE TYPE Net New Entering Distribution Exiting	0 0 1.000 0 3% EBU 7 3.0% 0	139 0 1.000 139 3% EBL 7 3.0% 32	462 0 1.000 462 3% EBT 7 3.0% 106 568	EBR 7 0 1.000 7 3% EBR 7 3.0% 2	WBU	WBL 184 0 1.000 184 3% WBL 7 3.0% 42 226	546 0 1.000 546 3% WBT 7 3.0% 126	58 0 1.000 58 3% WBR 7 3.0% 13	0 0 1.000 0 3% NBU 7 3.0% 0	40 0 1.000 40 3% NBL 7 3.0% 9	182 0 1.000 182 3% NBT 7 3.0% 42 224	70 0 1.000 70 3% NBR 7 3.0% 16	0 0 1.000 0 3% SBU 7 3.0% 0	108 0 1.000 108 3% SBL 7 3.0% 25	215 0 1.000 215 3% SBT 7 3.0% 49 264	168 0 1.000 168 3% SBR 7 3.0% 39
PM Adjusted Turning Movement Counts¹ PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout Annual Growth Rate PM 2028 NO-BUILD TRAFFIC GROWTH PM 2028 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION" LAND USE TYPE Net New Entering Distribution Exiting "PM PROJECT TRIPS"	0 0 1.000 3% EBU 7 3.0% 0	139 0 1.000 139 3% EBL 7 3.0% 32 171	462 0 1.000 462 3% EBT 7 3.0% 106 568 EBT 20%	EBR 7 0 1.000 7 3% EBR 7 3.0% 2 9 EBR 10%	WBU	WBL 184 0 1.000 184 3% WBL 7 3.0% 42 226 WBL 5%	546 0 1.000 546 3% WBT 7 3.0% 126 672 WBT	58 0 1.000 58 3% WBR 7 3.0% 13 71 WBR	0 0 1.000 3% NBU 7 3.0% 0	40 0 1.000 40 3% NBL 7 3.0% 9 49	182 0 1.000 182 3% NBT 7 3.0% 42 224 NBT	70 0 1.000 70 3% NBR 7 3.0% 16 86	0 0 1.000 3% SBU 7 3.0% 0	108 0 1.000 108 3% SBL 7 3.0% 25 133	215 0 1.000 215 3% SBT 7 3.0% 49 264 SBT 5%	168 0 1.000 168 3% SBR 7 3.0% 39 207
PM Adjusted Turning Movement Counts¹ PM Volume Balancing Peak Season Correction Factor PM 2021 EXISTING TRAFFIC PM Heavy Vehicle Percentage PM 2028 NO-BUILD TRAFFIC Years To Buildout Annual Growth Rate PM 2028 NO-BUILD TRAFFIC GROWTH PM 2028 NO-BUILD TRAFFIC GROWTH PM 2028 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION" LAND USE TYPE Net New Entering Distribution Exiting	0 0 1.000 0 3% EBU 7 3.0% 0	139 0 1.000 139 3% EBL 7 3.0% 32	462 0 1.000 462 3% EBT 7 3.0% 106 568	EBR 7 0 1.000 7 3% EBR 7 3.0% 2	WBU	WBL 184 0 1.000 184 3% WBL 7 3.0% 42 226	546 0 1.000 546 3% WBT 7 3.0% 126 672	58 0 1.000 58 3% WBR 7 3.0% 13	0 0 1.000 0 3% NBU 7 3.0% 0	40 0 1.000 1.000 40 NBL 7 3.0% 9 49 NBL NBL NBL NBL	182 0 1.000 182 3% NBT 7 3.0% 42 224	70 0 1.000 70 3% NBR 7 3.0% 16	0 0 1.000 0 3% SBU 7 3.0% 0	108 0 1.000 108 3% SBL 7 3.0% 25	215 0 1.000 215 3% SBT 7 3.0% 49 264	168 0 1.000 168 3% SBR 7 3.0% 39

Appendix D – Capacity Analysis Worksheets

2021 EXISTING CONDITIONS

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			र्स	Y	
Traffic Vol, veh/h	669	3	1	405	3	0
Future Vol, veh/h	669	3	1	405	3	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	-	_	_	_	0	-
Veh in Median Storag	e,# 0	-	_	0	0	-
Grade, %	0	_	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	3	3	4	3	3
Mymt Flow	743	3	1	450	3	0
WWWIICTIOW	140	U	Į.	400	U	U
Major/Minor	Major1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	746	0	1197	745
Stage 1	_	-	-	-	745	-
Stage 2	-	-	-	-	452	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	_	858	-	204	412
Stage 1	-	-	-	-	467	-
Stage 2	-	-	-	-	639	-
Platoon blocked, %	-	-		_		
Mov Cap-1 Maneuver	_	_	858	-	204	412
Mov Cap-2 Maneuver		_	-	_	204	-
Stage 1	_	_	_	_	467	_
Stage 2	_	_	_	_	638	_
Olago 2					000	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		22.9	
HCM LOS					С	
Minor Lane/Major Mvr	nt I	NBLn1	EBT	EBR	WBL	WBT
	iic i	204			858	
Capacity (veh/h)			-	-		-
HCM Central Delay (a		0.016	-		0.001	-
HCM Long LOS	7	22.9	-	-	9.2	0
HCM OF the 9/ tills O/work	.\	0.1	-	-	A	Α
HCM 95th %tile Q(veh	1)	U. I	-	-	0	-

Movement	Intersection						
Movement EBL EBR NBL NBT SBT SBF Lane Configurations ★		1.2					
Lane Configurations Y ↓ ↓ Traffic Vol, veh/h 48 3 1 312 187 31 Future Vol, veh/h 48 3 1 312 187 31 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free			EDD	NDI	NDT	CDT	CDD
Traffic Vol, veh/h 48 3 1 312 187 31 Future Vol, veh/h 48 3 1 312 187 31 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free			EBK	INBL			SBK
Future Vol, veh/h			2	4			24
Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free Free							
Sign Control Stop Stop Free Room Storage Length 0 - - 0	-						
RT Channelized - None - None - None Storage Length 0 0 0 Veh in Median Storage, # 0 0 0 Grade, % 0 0 0 Peak Hour Factor 91 91 91 91 91 Heavy Vehicles, % 3 3 3 1 1 3 Mymt Flow 53 3 1 343 205 34 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 567 222 239 0 - 0 Stage 1 222 - - - - - - Stage 2 345 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Storage Length 0 - - - - - - - - - - - - - - - -							
Veh in Median Storage, # 0 - - 0 0 Grade, % 0 - - 0 0 Peak Hour Factor 91 91 91 91 91 91 Heavy Vehicles, % 3 3 3 1 1 3 Mwmt Flow 53 3 1 343 205 34 Major/Minor Minor Z Major 1 Major 2 Conflicting Flow All 567 222 239 0 - 0 Stage 1 222 -							
Grade, % 0 - - 0 0 Peak Hour Factor 91							-
Peak Hour Factor 91							-
Heavy Vehicles, % 3 3 3 1 1 3 Mvmt Flow 53 3 1 343 205 34 Major/Minor Minor2 Major1 Major2 Major2 Conflicting Flow All 567 222 239 0 - 0							-
Mount Flow 53 3 1 343 205 343 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 567 222 239 0 - 0 Stage 1 222 -							
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 567 222 239 0 - 0 Stage 1 222 -							3
Conflicting Flow All 567 222 239 0 - C Stage 1 222 -	Mvmt Flow	53	3	1	343	205	34
Conflicting Flow All 567 222 239 0 - C Stage 1 222 -							
Conflicting Flow All 567 222 239 0 - C Stage 1 222 -	Major/Minor	Minor2		Major1	N	//ajor2	
Stage 1 222 - - - - Stage 2 345 - - - - Critical Hdwy 6.43 6.23 4.13 - - - Critical Hdwy Stg 1 5.43 -							0
Stage 2 345 -							-
Critical Hdwy 6.43 6.23 4.13 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>							_
Critical Hdwy Stg 1 5.43 - - - - Critical Hdwy Stg 2 5.43 - - - - Follow-up Hdwy 3.527 3.327 2.227 - - - Pot Cap-1 Maneuver 483 815 1322 - <				<u>4</u> 13			_
Critical Hdwy Stg 2 5.43 - - - - Follow-up Hdwy 3.527 3.327 2.227 - - Pot Cap-1 Maneuver 483 815 1322 - - Stage 2 715 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 483 815 1322 - - - Mov Cap-2 Maneuver 483 - - - - - - Stage 1 812 - - - - - - Stage 2 715 - - - - - - Approach EB NB SB HCM Control Delay, s 13.2 0 0 0 HCM LOS B	•		0.23	₹.13			-
Follow-up Hdwy 3.527 3.327 2.227			-	-	-		-
Pot Cap-1 Maneuver 483 815 1322 - - Stage 1 813 - - - - Stage 2 715 - - - - Platoon blocked, % - - - - - - Mov Cap-1 Maneuver 483 815 1322 - <td></td> <td></td> <td>2 227</td> <td>2 227</td> <td>•</td> <td></td> <td>-</td>			2 227	2 227	•		-
Stage 1 813 -					-	_	-
Stage 2 715 - - - - Platoon blocked, % Mov Cap-1 Maneuver 483 815 1322 - - - Mov Cap-2 Maneuver 483 - - - - - - Stage 1 812 - </td <td></td> <td></td> <td>010</td> <td>1322</td> <td></td> <td>-</td> <td>-</td>			010	1322		-	-
Platoon blocked, % -			-	-	-		_
Mov Cap-1 Maneuver 483 815 1322 - - Mov Cap-2 Maneuver 483 - - - - Stage 1 812 - - - - - Stage 2 715 - - - - - - Approach EB NB SB HCM Control Delay, s 13.2 0 0 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR		/15	-	-	-		-
Mov Cap-2 Maneuver 483 -		400	045	4000	-		-
Stage 1 812 -			815	1322	-		-
Stage 2 715 - - - - Approach EB NB SB HCM Control Delay, s 13.2 0 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR			-	-	-	-	-
Approach EB NB SB HCM Control Delay, s 13.2 0 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	ŭ		-	-	-	-	-
HCM Control Delay, s 13.2 0 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	Stage 2	715	-	-	-	-	-
HCM Control Delay, s 13.2 0 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR							
HCM Control Delay, s 13.2 0 0 HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR	Approach	EB		NB		SB	
HCM LOS B Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR							
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBF				- 0		- 0	
	TIOWI LOO						
•						05-	05-
		nt		NBT		SBT	SBR
	Capacity (veh/h)		1322			-	-
				-		-	-
110 M Contact Boldy (c)			7.7			-	-
	UCM Lana LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh) 0 - 0.4 -							

	۶	-	•	~	-	•	1	Ť	~	/	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	Þ		7	1		1	1		7	1	
Traffic Volume (veh/h)	154	633	21	68	327	61	31	197	202	144	158	150
Future Volume (veh/h)	154	633	21	68	327	61	31	197	202	144	158	150
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1803	1803	1803	1856	1856	1856
Adj Flow Rate, veh/h	159	653	22	70	337	63	32	203	208	148	163	155
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	407	758	26	210	607	113	146	215	221	178	241	229
Arrive On Green	0.07	0.42	0.42	0.05	0.40	0.40	0.05	0.26	0.26	0.07	0.28	0.28
Sat Flow, veh/h	1767	1785	60	1767	1520	284	1717	816	836	1767	874	831
Grp Volume(v), veh/h	159	0	675	70	0	400	32	0	411	148	0	318
Grp Sat Flow(s),veh/h/ln	1767	0	1845	1767	0	1804	1717	0	1652	1767	0	1706
Q Serve(g_s), s	6.3	0.0	39.9	2.6	0.0	20.5	2.4	0.0	29.3	5.8	0.0	19.9
Cycle Q Clear(g_c), s	6.3	0.0	39.9	2.6	0.0	20.5	2.4	0.0	29.3	5.8	0.0	19.9
Prop In Lane	1.00		0.03	1.00		0.16	1.00		0.51	1.00		0.49
Lane Grp Cap(c), veh/h	407	0	783	210	0	720	0	0	436	178	0	470
V/C Ratio(X)	0.39	0.00	0.86	0.33	0.00	0.56	0.00	0.00	0.94	0.83	0.00	0.68
Avail Cap(c_a), veh/h	489	0	783	336	0	720	0	0	468	266	0	759
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	20.6	0.0	31.3	24.9	0.0	27.8	0.0	0.0	43.3	30.0	0.0	38.7
Incr Delay (d2), s/veh	0.6	0.0	12.0	0.9	0.0	3.1	0.0	0.0	26.8	13.1	0.0	1.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.5	0.0	19.2	1.1	0.0	9.1	0.0	0.0	15.0	2.8	0.0	8.4
Unsig. Movement Delay, s/veh		0.0	40.4	05.0	0.0	00.0	0.0	0.0	70.4	40.0	0.0	40.0
LnGrp Delay(d),s/veh	21.3	0.0	43.4	25.8	0.0	30.9	0.0	0.0	70.1	43.2	0.0	40.3
LnGrp LOS	С	A	D	С	A	С	A	A	E	D	A	<u>D</u>
Approach Vol, veh/h		834			470			443			466	
Approach Delay, s/veh		39.2			30.1			65.0			41.2	
Approach LOS		D			С			E			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.0	57.9	12.0	39.0	14.0	54.9	13.4	37.7				
Change Period (Y+Rc), s	5.6	7.0	6.0	6.0	5.6	7.0	5.4	6.0				
Max Green Setting (Gmax), s	14.0	34.0	53.4	53.4	14.0	34.0	14.0	34.0				
Max Q Clear Time (g_c+l1), s	4.6	41.9	4.4	21.9	8.3	22.5	7.8	31.3				
Green Ext Time (p_c), s	0.1	0.0	0.1	1.0	0.2	5.4	0.2	0.4				
Intersection Summary												
HCM 6th Ctrl Delay			42.9									
HCM 6th LOS			D									

Lane Group EBL EBT WBL WBT NBL NBT SBL SBT Lane Group Flow (vph) 159 675 70 400 32 411 148 318 v/c Ratio 0.41 0.92 0.38 0.62 0.10 0.90 0.58 0.45 Control Delay 21.1 56.3 23.8 39.1 21.2 61.2 32.1 23.1 Queue Delay 0.0		*	-	1	4-	4	Ť	1	Ţ
v/c Ratio 0.41 0.92 0.38 0.62 0.10 0.90 0.58 0.45 Control Delay 21.1 56.3 23.8 39.1 21.2 61.2 32.1 23.1 Queue Delay 0.0	Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Control Delay 21.1 56.3 23.8 39.1 21.2 61.2 32.1 23.1 Queue Delay 0.0<	Lane Group Flow (vph)	159	675	70	400	32	411	148	318
Queue Delay 0.0 <th< td=""><td>v/c Ratio</td><td>0.41</td><td>0.92</td><td>0.38</td><td>0.62</td><td>0.10</td><td>0.90</td><td>0.58</td><td>0.45</td></th<>	v/c Ratio	0.41	0.92	0.38	0.62	0.10	0.90	0.58	0.45
Total Delay 21.1 56.3 23.8 39.1 21.2 61.2 32.1 23.1 Queue Length 50th (ft) 68 ~554 28 260 15 273 71 143 Queue Length 95th (ft) 117 #864 58 #410 35 #429 111 211 Internal Link Dist (ft) 1715 1136 295 1065 Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 430 731 265 640 367 508 286 789 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Control Delay	21.1	56.3	23.8	39.1	21.2	61.2	32.1	23.1
Queue Length 50th (ft) 68 ~554 28 260 15 273 71 143 Queue Length 95th (ft) 117 #864 58 #410 35 #429 111 211 Internal Link Dist (ft) 1715 1136 295 1065 Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 430 731 265 640 367 508 286 789 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Length 95th (ft) 117 #864 58 #410 35 #429 111 211 Internal Link Dist (ft) 1715 1136 295 1065 Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 430 731 265 640 367 508 286 789 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Total Delay	21.1	56.3	23.8	39.1	21.2	61.2	32.1	23.1
Internal Link Dist (ft) 1715 1136 295 1065 Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 430 731 265 640 367 508 286 789 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0	Queue Length 50th (ft)	68	~554	28	260	15	273	71	143
Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 430 731 265 640 367 508 286 789 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Queue Length 95th (ft)	117	#864	58	#410	35	#429	111	211
Base Capacity (vph) 430 731 265 640 367 508 286 789 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Internal Link Dist (ft)		1715		1136		295		1065
Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Turn Bay Length (ft)	150		175		150		200	
Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Base Capacity (vph)	430	731	265	640	367	508	286	789
Storage Cap Reductn 0 0 0 0 0 0 0	Starvation Cap Reductn	0	0	0	0	0	0	0	0
<u> </u>	Spillback Cap Reductn	0	0	0	0	0	0	0	0
	Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio 0.37 0.92 0.26 0.63 0.09 0.81 0.52 0.40	Reduced v/c Ratio	0.37	0.92	0.26	0.63	0.09	0.81	0.52	0.40

Intersection Summary

Synchro 11 Report Kimley-Horn

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection						
Int Delay, s/veh	0.1					
		EDD	WDI	WDT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\$	^	^	4	Y	4
Traffic Vol, veh/h	539	0	0	649	4	1
Future Vol, veh/h	539	0	0	649	4	1
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	3	3	3	1	3	3
Mvmt Flow	561	0	0	676	4	1
Major/Minor NA	nio -1		Mais -0		Mine-1	
	ajor1		Major2		Minor1	F04
Conflicting Flow All	0	0	561		1237	561
Stage 1	-	-	-	-	561	-
Stage 2	-	-	-	-	676	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	
Pot Cap-1 Maneuver	-	-	1005	-	193	525
Stage 1	-	-	-	-	569	-
Stage 2	-	-	-	-	503	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1005	-	193	525
Mov Cap-2 Maneuver	-	-	-	-	193	-
Stage 1	_	-	_	_	569	_
Stage 2	_	_	_	_	503	_
Olage 2					500	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		21.7	
HCM LOS					С	
Minor Long/Major Mymt		NBLn1	EBT	EBR	WBL	WBT
Minor Lane/Major Mvmt	- 1			EDR		WDI
Capacity (veh/h)		221	-	-	1005	-
HCM Lane V/C Ratio		0.024	-	-	-	-
HCM Control Delay (s)		21.7	-	-	0	-
HCM Lane LOS		С	-	-	Α	-
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1.1					
	EBL	EBR	NBL	NBT	SBT	SBR
Movement Configurations		EBK	INBL			SBK
Lane Configurations	10	F	A	4	204	125
Traffic Vol, veh/h	48	5	4	263	294	135
Future Vol, veh/h	48	5	4	263	294	135
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	1	1	3
Mvmt Flow	56	6	5	306	342	157
Major/Minor	Minor		Major1		/oicr2	
	Minor2		Major1		//ajor2	
Conflicting Flow All	737	421	499	0	-	0
Stage 1	421	-	-	-	-	-
Stage 2	316	-	-	-	-	-
Critical Hdwy	6.43	6.23	4.13	-	-	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy	3.527	3.327	2.227	-	-	-
Pot Cap-1 Maneuver	384	630	1060	-	-	-
Stage 1	660	-	-	-	-	-
Stage 2	737	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	382	630	1060	-	-	-
Mov Cap-2 Maneuver	382	-	_	-	_	_
Stage 1	656	_	_	-	_	_
Stage 2	737	_	_	_	_	_
Clayo Z	, 01					
Approach	EB		NB		SB	
HCM Control Delay, s	15.7		0.1		0	
HCM LOS	С					
Ndimon Long /Nd 1 - P.4	.1	ND	NDT	EDL 4	ODT	ODD
Minor Lane/Major Mvm	Ι	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1060	-	•••	-	-
HCM Lane V/C Ratio		0.004	-	0.155	-	-
HCM Control Delay (s)		8.4	0	15.7	-	-
HCM Lane LOS		Α	Α	С	-	-
HCM 95th %tile Q(veh		0	-	0.5	-	-

	٠	-	•	~		•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		1	1		1	B		7	1	
Traffic Volume (veh/h)	139	462	7	184	546	58	40	182	70	108	215	168
Future Volume (veh/h)	139	462	7	184	546	58	40	182	70	108	215	168
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4.00	1.00	1.00		1.00	1.00		1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4050	No	4050	4050	No	4050	4000	No	4000	4050	No	4050
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1803	1803	1803	1856	1856	1856
Adj Flow Rate, veh/h	153	508	8	202	600	64	44	200	77	119	236	185
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	237	3 718	11	351	679	3 72	3 146	3 330	3 127	156	256	201
Cap, veh/h Arrive On Green	0.07	0.39	0.39	0.09	0.41	0.41	0.05	0.27	0.27	0.05	0.27	0.27
	1767	1822	29	1767	1648	176	1717	1239	477	1767	964	756
Sat Flow, veh/h												
Grp Volume(v), veh/h	153	0	516	202	0	664	44	0	277	119	0	421
Grp Sat Flow(s),veh/h/ln	1767	0	1850	1767	0	1824	1717	0	1717	1767	0	1720
Q Serve(g_s), s	5.9	0.0	28.1	8.1	0.0	40.4	3.3	0.0	16.9	4.3	0.0	28.6
Cycle Q Clear(g_c), s	5.9	0.0	28.1	8.1	0.0	40.4	3.3	0.0	16.9	4.3	0.0	28.6
Prop In Lane	1.00	0	0.02	1.00	0	0.10	1.00	^	0.28	1.00	0	0.44
Lane Grp Cap(c), veh/h	237	0	729	351	0	752	0	0	457	156	0	457
V/C Ratio(X)	0.65	0.00	0.71	0.58	0.00	0.88	0.00	0.00	0.61	0.76	0.00	0.92
Avail Cap(c_a), veh/h	324	0	729	406	1.00	752	0	1.00	486	266	0	765
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	26.3 3.0	0.0	30.6 5.7	22.6	0.0	32.6 14.3	0.0	0.0	38.5	28.0	0.0	42.8
Incr Delay (d2), s/veh	0.0	0.0	0.0	1.5 0.0	0.0	0.0	0.0	0.0	1.8 0.0	7.5 0.0	0.0	10.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln	2.5	0.0	13.1	3.3	0.0	19.7	0.0	0.0	7.3	2.1	0.0	13.2
Unsig. Movement Delay, s/veh		0.0	13.1	3.3	0.0	19.7	0.0	0.0	1.3	2.1	0.0	13.2
LnGrp Delay(d),s/veh	29.2	0.0	36.3	24.1	0.0	46.9	0.0	0.0	40.3	35.6	0.0	52.8
LnGrp LOS	29.2 C	Α	30.3 D	24.1 C	Α	40.9 D	0.0 A	Α	40.5 D	33.0 D	0.0 A	52.0 D
		669	U	U	866	U		321	U	U	540	D
Approach Vol, veh/h Approach Delay, s/veh		34.7			41.6			34.8			49.0	
Approach LOS		34.7 C			41.0 D			34.0 C			49.0 D	
Approach LOS		C			D						D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	15.9	54.3	12.0	37.9	13.7	56.5	11.9	38.0				
Change Period (Y+Rc), s	5.6	7.0	6.0	6.0	5.6	7.0	5.4	6.0				
Max Green Setting (Gmax), s	14.0	34.0	53.4	53.4	14.0	34.0	14.0	34.0				
Max Q Clear Time (g_c+I1), s	10.1	30.1	5.3	30.6	7.9	42.4	6.3	18.9				
Green Ext Time (p_c), s	0.2	2.6	0.1	1.3	0.2	0.0	0.2	0.7				
Intersection Summary												
HCM 6th Ctrl Delay			40.4									
HCM 6th LOS			D									

	•	-	1	-	4	1	1	Į.	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	153	516	202	664	44	277	119	421	
v/c Ratio	0.56	0.71	0.51	0.88	0.26	0.79	0.44	0.70	
Control Delay	24.1	39.9	19.4	48.4	30.5	59.1	31.5	36.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	24.1	39.9	19.4	48.4	30.5	59.1	31.5	36.8	
Queue Length 50th (ft)	53	339	73	464	25	195	65	254	
Queue Length 95th (ft)	116	#628	140	#887	51	271	96	321	
Internal Link Dist (ft)		1715		1136		295		1065	
Turn Bay Length (ft)	150		175		150		200		
Base Capacity (vph)	315	725	414	757	225	504	312	790	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.49	0.71	0.49	0.88	0.20	0.55	0.38	0.53	
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2028 NO-BUILD CONDITIONS

Intersection						
Int Delay, s/veh	0.1					
		EDD	WDL	WDT	NDI	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	4		400	Y	^
Traffic Vol, veh/h	823	4	1	498	4	0
Future Vol, veh/h	823	4	1	498	4	0
Conflicting Peds, #/hr	0	_ 0	_ 0	_ 0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	3	3	4	3	3
Mvmt Flow	914	4	1	553	4	0
Major/Minor Ma	ajor1	N	Major2		Minor1	
						916
Conflicting Flow All	0	0	918	0	1471	
Stage 1	-	-	-	-	916	-
Stage 2	-	-	- 4.40	-	555	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-		3.327
Pot Cap-1 Maneuver	-	-	739	-	139	329
Stage 1	-	-	-	-	388	-
Stage 2	-	-	-	-	573	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	739	-	139	329
Mov Cap-2 Maneuver	-	-	-	-	139	-
Stage 1	-	_	-	-	388	-
Stage 2	-	-	-	-	572	-
Annroach	ED		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		31.8	
HCM LOS					D	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		139		-	739	-
HCM Lane V/C Ratio		0.032	_		0.002	_
HCM Control Delay (s)		31.8		_	9.9	0
HCM Lane LOS		D	_	_	9.9 A	A
HCM 95th %tile Q(veh)		0.1	_		0	-
HOW JOHN JOHN G(VOII)		0.1			U	

Intersection						
Int Delay, s/veh	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			न	1	
Traffic Vol, veh/h	59	4	1	384	230	38
Future Vol, veh/h	59	4	1	384	230	38
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	3	3	3	1	1	3
Mvmt Flow	65	4	1	422	253	42
	- 00					16
Major/Minor	Minor2		Major1	N	//ajor2	
Conflicting Flow All	698	274	295	0	-	0
Stage 1	274	-	-	-	-	-
Stage 2	424	-	-	-	-	-
Critical Hdwy	6.43	6.23	4.13	-	-	-
Critical Hdwy Stg 1	5.43	_	_	-	-	_
Critical Hdwy Stg 2	5.43	_	_	-	_	-
Follow-up Hdwy		3.327	2.227	-	_	_
Pot Cap-1 Maneuver	405	762	1261	_	_	_
Stage 1	770	- 102	-	_	_	_
Stage 2	658					_
Platoon blocked, %	000				_	
Mov Cap-1 Maneuver	405	762	1261	_		-
•	405	102	1201	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	769	-	-	-	-	-
Stage 2	658	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	15.3		0		0	
HCM LOS	13.3		- 0		- 0	
TIOWI LOO	U					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1261	-	417	-	-
HCM Lane V/C Ratio		0.001	-	0.166	-	-
HCM Control Delay (s)	7.9	0	15.3	-	-
HCM Lane LOS		A	A	С	-	_
HCM 95th %tile Q(veh	1)	0	_	0.6	-	_
	1			7.0		

	٨	-	•	•		4	1	1	~	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	B		7	1		7	1		7	1	
Traffic Volume (veh/h)	189	779	26	84	402	75	38	242	248	177	194	184
Future Volume (veh/h)	189	779	26	84	402	75	38	242	248	177	194	184
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1803	1803	1803	1856	1856	1856
Adj Flow Rate, veh/h	195	803	27	87	414	77	39	249	256	182	200	190
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	304	685	23	143	522	97	146	231	237	211	274	261
Arrive On Green	0.09	0.38	0.38	0.05	0.34	0.34	0.05	0.28	0.28	0.09	0.31	0.31
Sat Flow, veh/h	1767	1785	60	1767	1522	283	1717	814	837	1767	875	831
Grp Volume(v), veh/h	195	0	830	87	0	491	39	0	505	182	0	390
Grp Sat Flow(s),veh/h/ln	1767	0	1845	1767	0	1805	1717	0	1652	1767	0	1706
Q Serve(g_s), s	8.5	0.0	46.1	3.5	0.0	29.5	2.9	0.0	34.0	8.1	0.0	24.4
Cycle Q Clear(g_c), s	8.5	0.0	46.1	3.5	0.0	29.5	2.9	0.0	34.0	8.1	0.0	24.4
Prop In Lane	1.00	•	0.03	1.00	•	0.16	1.00	•	0.51	1.00	•	0.49
Lane Grp Cap(c), veh/h	304	0	709	143	0	619	0	0	468	211	0	535
V/C Ratio(X)	0.64	0.00	1.17	0.61	0.00	0.79	0.00	0.00	1.08	0.86	0.00	0.73
Avail Cap(c_a), veh/h	353	0	709	266	0	619	0	0	468	266	0	759
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	26.4 3.1	0.0	37.0 91.7	29.3 4.1	0.0	35.6 10.1	0.0	0.0	43.0	34.0 20.4	0.0	36.6
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	64.5 0.0	0.0	0.0	1.9 0.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln	3.6	0.0	37.6	1.6	0.0	14.1	0.0	0.0	21.9	3.7	0.0	10.3
Unsig. Movement Delay, s/veh		0.0	37.0	1.0	0.0	14.1	0.0	0.0	21.9	3.1	0.0	10.3
LnGrp Delay(d),s/veh	29.5	0.0	128.7	33.3	0.0	45.7	0.0	0.0	107.5	54.4	0.0	38.6
LnGrp LOS	29.5 C	0.0 A	120. <i>1</i>	33.3 C	Α	45.7 D	0.0 A	Α	107.5 F	54.4 D	Α	30.0 D
Approach Vol, veh/h		1025	<u> </u>		578	ט		544	<u> </u>	<u> </u>	572	
Approach Delay, s/veh		1025			43.8			99.8			43.6	
Approach LOS		F			43.0 D			_			43.0 D	
Approach LOS		Г			U			F			U	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.3	53.1	12.0	43.6	16.2	48.1	15.6	40.0				
Change Period (Y+Rc), s	5.6	7.0	6.0	6.0	5.6	7.0	5.4	6.0				
Max Green Setting (Gmax), s	14.0	34.0	53.4	53.4	14.0	34.0	14.0	34.0				
Max Q Clear Time (g_c+I1), s	5.5	48.1	4.9	26.4	10.5	31.5	10.1	36.0				
Green Ext Time (p_c), s	0.1	0.0	0.1	1.2	0.2	1.7	0.2	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			79.9									
HCM 6th LOS			E									

Long Craum EDI EDI WIDI WIDI NIDI CIDI CIDI
Lane Group EBL EBT WBL WBT NBL NBT SBL SBT
Lane Group Flow (vph) 195 830 87 491 39 505 182 390
v/c Ratio 0.73 1.39 0.45 0.92 0.12 0.96 0.75 0.50
Control Delay 39.1 217.6 26.5 64.5 20.9 69.7 44.6 23.0
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total Delay 39.1 217.6 26.5 64.5 20.9 69.7 44.6 23.0
Queue Length 50th (ft) 90 ~861 38 369 17 362 85 182
Queue Length 95th (ft) #173 #1144 69 #585 41 #595 #178 273
Internal Link Dist (ft) 1715 1136 295 1065
Turn Bay Length (ft) 150 175 150 200
Base Capacity (vph) 285 598 266 535 329 525 267 789
Starvation Cap Reductn 0 0 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0 0
Reduced v/c Ratio 0.68 1.39 0.33 0.92 0.12 0.96 0.68 0.49

Intersection Summary

Synchro 11 Report Kimley-Horn

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	•		4	Y	
Traffic Vol, veh/h	663	0	0	798	5	1
Future Vol, veh/h	663	0	0	798	5	1
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag	e,# 0	_	-	0	0	-
Grade, %	0	-	_	0	0	_
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	3	3	3	1	3	3
Mvmt Flow	691	0	0	831	5	1
IVIVIII(I IOVV	001		- 0	001	J	
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	691	0	1522	691
Stage 1	-	-	-	-	691	-
Stage 2	-	-	-	-	831	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	-	899	-	130	443
Stage 1	-	-	-	-	495	-
Stage 2	-	-	-	-	426	-
Platoon blocked, %	_	-		_		
Mov Cap-1 Maneuver		-	899	_	130	443
Mov Cap-2 Maneuve		_	-	_	130	-
Stage 1	_	_	_	_	495	_
Stage 2	_	_	_	_	426	_
Glaye Z	_	-	_	_	720	_
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		30.6	
HCM LOS					D	
Minor Long/Mair M	mt	NDI -4	EDT	EDD	WDI	MDT
Minor Lane/Major Mv	IIIL	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		147	-	-	899	-
HCM Lane V/C Ratio	,	0.043	-	-	-	-
HCM Control Delay (s	6)	30.6	-	-	0	-
HCM Lane LOS		D	-	-	A	-
HCM 95th %tile Q(vel	1)	0.1	-	-	0	-
	'/			. 1	.,	.1

Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, and and a storage, and and a storage with the storage of the	Intersection						
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, i Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Int Delay, s/veh	1.4					
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, i Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h Future Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, i Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		Y	LDIK	HUL	4	₽	אופט
Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, i Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		59	6	5	323	362	166
Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, i Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		59	6	5	323	362	166
Sign Control RT Channelized Storage Length Veh in Median Storage, i Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)							
RT Channelized Storage Length Veh in Median Storage, i Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0	0	0	_ 0	0	_ 0
Storage Length Veh in Median Storage, i Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		Stop	Stop	Free	Free	Free	Free
Veh in Median Storage, and Storage, and Storage, and Storage, and Storage, and Storage, and Storage and Stage and St		-	None	-	None	-	None
Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0	-	-	-	-	-
Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)			-	-	0	0	-
Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Delay s HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Grade, %	0	-	-	0	0	-
Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Peak Hour Factor	86	86	86	86	86	86
Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Heavy Vehicles, %	3	3	3	1	1	3
Major/Minor Mi Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Mvmt Flow	69	7	6	376	421	193
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)							
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)							
Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		Minor2		Major1		//ajor2	
Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		906	518	614	0	-	0
Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		518	-	-	-	-	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 3 Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		388	-	-	-	-	-
Critical Hdwy Stg 2 Follow-up Hdwy Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Critical Hdwy	6.43	6.23	4.13	-	-	-
Critical Hdwy Stg 2 Follow-up Hdwy Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Critical Hdwy Stg 1	5.43	-	-	-	-	-
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		5.43	-	-	-	-	-
Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		3.527	3.327	2.227	_	-	-
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		305	556	961	_	_	_
Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	•	596	-	-	_	_	_
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		683	_	_	_	_	_
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		003	_	_	_	_	-
Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		202	EEG	061	-		-
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)			556	961	-	-	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)			-	-	-	-	-
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		591	-	-	-	-	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Stage 2	683	-	-	-	-	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)							
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Annroach	EB		NB		SB	
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)				0.1		0	
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)				0.1		U	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	HCM LOS	С					
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)							
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	Minor Lane/Major Myr	nt	NBL	NRT	EBLn1	SBT	SBR
HCM Lane V/C Ratio HCM Control Delay (s)			961	-		-	<u> </u>
HCM Control Delay (s)			0.006		0.239		_
		\				-	_
HUMIANE LUS)	8.8	0	19.9	-	-
		,	A	Α	С	-	-
HCM 95th %tile Q(veh)	HCM 95th %tile Q(veh	1)	0	-	0.9	-	-

	۶	-	•	~	+	•	1	1	~	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	B		7	1		7	1		7	1	
Traffic Volume (veh/h)	171	568	9	226	672	71	49	224	86	133	264	207
Future Volume (veh/h)	171	568	9	226	672	71	49	224	86	133	264	207
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1803	1803	1803	1856	1856	1856
Adj Flow Rate, veh/h	188	624	10	248	738	78	54	246	95	146	290	227
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	216	555	9	266	550	58	149	388	150	176	310	243
Arrive On Green	0.09	0.30	0.30	0.12	0.33	0.33	0.05	0.31	0.31	0.07	0.32	0.32
Sat Flow, veh/h	1767	1821	29	1767	1650	174	1717	1238	478	1767	965	755
Grp Volume(v), veh/h	188	0	634	248	0	816	54	0	341	146	0	517
Grp Sat Flow(s),veh/h/ln	1767	0	1850	1767	0	1824	1717	0	1716	1767	0	1720
Q Serve(g_s), s	8.5	0.0	36.6	12.6	0.0	40.0	4.1	0.0	20.4	5.7	0.0	35.0
Cycle Q Clear(g_c), s	8.5	0.0	36.6	12.6	0.0	40.0	4.1	0.0	20.4	5.7	0.0	35.0
Prop In Lane	1.00		0.02	1.00		0.10	1.00		0.28	1.00		0.44
Lane Grp Cap(c), veh/h	216	0	564	266	0	608	0	0	537	176	0	553
V/C Ratio(X)	0.87	0.00	1.12	0.93	0.00	1.34	0.00	0.00	0.63	0.83	0.00	0.94
Avail Cap(c_a), veh/h	266	0	564	266	0	608	0	0	537	266	0	765
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	30.2	0.0	41.7	34.1	0.0	40.0	0.0	0.0	35.3	29.7	0.0	39.5
Incr Delay (d2), s/veh	21.8	0.0	76.7	37.2	0.0	165.0	0.0	0.0	2.4	12.7	0.0	14.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.7	0.0	27.9	7.9	0.0	44.9	0.0	0.0	8.8	2.7	0.0	16.7
Unsig. Movement Delay, s/veh		0.0	440.4	740	0.0	005.0	0.0	0.0	07.7	10.1	0.0	= 4.4
LnGrp Delay(d),s/veh	52.0	0.0	118.4	71.3	0.0	205.0	0.0	0.0	37.7	42.4	0.0	54.4
LnGrp LOS	D	A	F	E	A	F	A	A	D	D	Α	D
Approach Vol, veh/h		822			1064			395			663	
Approach Delay, s/veh		103.2			173.8			32.6			51.7	
Approach LOS		F			F			С			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	19.6	43.6	12.2	44.6	16.2	47.0	13.2	43.6				
Change Period (Y+Rc), s	5.6	7.0	6.0	6.0	5.6	7.0	5.4	6.0				
Max Green Setting (Gmax), s	14.0	34.0	53.4	53.4	14.0	34.0	14.0	34.0				
Max Q Clear Time (g_c+I1), s	14.6	38.6	6.1	37.0	10.5	42.0	7.7	22.4				
Green Ext Time (p_c), s	0.0	0.0	0.1	1.6	0.2	0.0	0.2	8.0				
Intersection Summary												
HCM 6th Ctrl Delay			107.6									
HCM 6th LOS			F									

	1	-	1	-	4	†	1	↓
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	188	634	248	816	54	341	146	517
v/c Ratio	0.75	1.03	0.81	1.22	0.38	0.84	0.53	0.78
Control Delay	45.2	83.7	50.8	146.5	33.3	60.1	31.3	38.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.2	83.7	50.8	146.5	33.3	60.1	31.3	38.3
Queue Length 50th (ft)	90	~583	133	~805	30	242	75	320
Queue Length 95th (ft)	#208	#835	#315	#1149	63	330	110	408
Internal Link Dist (ft)		1715		1136		295		1065
Turn Bay Length (ft)	150		175		150		200	
Base Capacity (vph)	275	618	306	669	173	504	304	790
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.68	1.03	0.81	1.22	0.31	0.68	0.48	0.65

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2028 BUILD CONDITIONS

Intersection						
Int Delay, s/veh	3.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	וטוע	1100	4	Y	וטוז
Traffic Vol, veh/h	830	15	21	500	39	62
Future Vol, veh/h	830	15	21	500	39	62
Conflicting Peds, #/hr	000	0	0	0	0	02
	Free	Free	Free	Free	Stop	Stop
RT Channelized		None				
	-		-	None	- 0	None
Storage Length	<u> </u>	-	-	-		-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	3	3	4	3	3
Mvmt Flow	922	17	23	556	43	69
Major/Minor Major/Minor	ajor1	N	Major2	ľ	Minor1	
Conflicting Flow All	0	0	939		1533	931
Stage 1	-	-	909	-	931	-
		_		_	602	
Stage 2	-	-	4.13			6.23
Critical Hdwy	-	-		-	6.43	
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227		3.527	
Pot Cap-1 Maneuver	-	-	726	-	128	322
Stage 1	-	-	-	-	382	-
Stage 2	-	-	-	-	545	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	726	-	122	322
Mov Cap-2 Maneuver	-	-	-	-	122	-
Stage 1	-	-	-	-	382	-
Stage 2	-	-	-	-	520	-
, and the second						
A	ED		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		45	
HCM LOS					Е	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		197	-	-	726	-
HCM Lane V/C Ratio		0.57	_	_	0.032	-
HCM Control Delay (s)		45	_	-	10.1	0
HCM Lane LOS		E	-	_	В	A
HCM 95th %tile Q(veh)		3.1	_	_	0.1	-
TOM OUT THE QUELLE		0.1			J. 1	

Intersection												
Int Delay, s/veh	2.4											
		CDT	EDD	MDI	MOT	WDD	NDI	NDT	NDD	ODI	ODT	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	59	0	4	14	0	28	1	384	4	9	230	38
Future Vol, veh/h	59	0	4	14	0	28	1	384	4	9	230	38
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	3	3	3	3	3	3	3	1	3	3	1	3
Mvmt Flow	65	0	4	15	0	31	1	422	4	10	253	42
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	736	722	274	722	741	424	295	0	0	426	0	0
Stage 1	294	294		426	426	-		-	-	-	-	-
Stage 2	442	428	_	296	315	_	-	_	_	_	_	_
Critical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13	_	_	4.13	_	_
Critical Hdwy Stg 1	6.13	5.53	-	6.13	5.53	- 0.20	-	_	_	- 1.10	_	_
Critical Hdwy Stg 2	6.13	5.53	_	6.13	5.53	_	_	_	_	_	_	_
Follow-up Hdwy	3.527	4.027	3.327	3.527	4.027	3.327	2.227	_	_	2.227	_	_
Pot Cap-1 Maneuver	333	352	762	341	343	628	1261	_	_	1128	_	_
Stage 1	712	668	- 02	604	584	- 520	- 1201	_	_	- 1.20	_	_
Stage 2	592	583	_	710	654				_		_	_
Platoon blocked, %	302	500		, 10	JU-7			_	_		_	_
Mov Cap-1 Maneuver	314	348	762	336	339	628	1261			1128	_	_
Mov Cap-1 Maneuver	314	348	-	336	339	- 020	- 1201	_	_	- 1120	_	_
Stage 1	711	661	<u>-</u>	603	583							
Stage 2	562	582	_	698	647		_	_		_		
Olaye Z	302	302	_	030	U -1 1							
Approach	EB			WB			NB			SB		
HCM Control Delay, s	19			13.2			0			0.3		
HCM LOS	С			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1261	_	-	326	487	1128	_	_			
HCM Lane V/C Ratio		0.001	_		0.212			_	_			
HCM Control Delay (s)		7.9	0	_	19	13.2	8.2	0	_			
HCM Lane LOS		Α	A	_	C	В	A	A	_			
HCM 95th %tile Q(veh)	0	-		0.8	0.3	0	-	_			
TION JOHN JOHN WINE WINE	1	U	_	_	0.0	0.0	U					

	٠	-	•	•	+	•	1	1	~	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1		7	1		7	1		1	1	
Traffic Volume (veh/h)	189	788	31	86	430	82	52	249	255	179	196	184
Future Volume (veh/h)	189	788	31	86	430	82	52	249	255	179	196	184
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1803	1803	1803	1856	1856	1856
Adj Flow Rate, veh/h	195	812	32	89	443	85	54	257	263	185	202	190
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	276	678	27	144	516	99	149	231	237	214	276	259
Arrive On Green	0.09	0.38	0.38	0.05	0.34	0.34	0.05	0.28	0.28	0.09	0.31	0.31
Sat Flow, veh/h	1767	1773	70	1767	1513	290	1717	817	836	1767	879	827
Grp Volume(v), veh/h	195	0	844	89	0	528	54	0	520	185	0	392
Grp Sat Flow(s),veh/h/ln	1767	0	1843	1767	0	1803	1717	0	1652	1767	0	1707
Q Serve(g_s), s	8.5	0.0	45.9	3.6	0.0	32.7	4.1	0.0	34.0	8.3	0.0	24.6
Cycle Q Clear(g_c), s	8.5	0.0	45.9	3.6	0.0	32.7	4.1	0.0	34.0	8.3	0.0	24.6
Prop In Lane	1.00		0.04	1.00		0.16	1.00		0.51	1.00		0.48
Lane Grp Cap(c), veh/h	276	0	705	144	0	615	0	0	468	214	0	535
V/C Ratio(X)	0.71	0.00	1.20	0.62	0.00	0.86	0.00	0.00	1.11	0.87	0.00	0.73
Avail Cap(c_a), veh/h	325	0	705	266	0	615	0	0	468	266	0	759
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	27.7	0.0	37.1	29.3	0.0	36.8	0.0	0.0	43.0	34.2	0.0	36.7
Incr Delay (d2), s/veh	5.6	0.0	102.5	4.3	0.0	14.5	0.0	0.0	75.4	21.0	0.0	2.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.8	0.0	39.5	1.6	0.0	16.2	0.0	0.0	23.4	3.8	0.0	10.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	33.3	0.0	139.6	33.6	0.0	51.3	0.0	0.0	118.4	55.3	0.0	38.7
LnGrp LOS	С	A	F	С	A	D	A	A	F	E	Α	<u>D</u>
Approach Vol, veh/h		1039			617			574			577	
Approach Delay, s/veh		119.6			48.8			107.3			44.0	
Approach LOS		F			D			F			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.3	52.9	12.2	43.6	16.2	47.9	15.8	40.0				
Change Period (Y+Rc), s	5.6	7.0	6.0	6.0	5.6	7.0	5.4	6.0				
Max Green Setting (Gmax), s	14.0	34.0	53.4	53.4	14.0	34.0	14.0	34.0				
Max Q Clear Time (g_c+I1), s	5.6	47.9	6.1	26.6	10.5	34.7	10.3	36.0				
Green Ext Time (p_c), s	0.1	0.0	0.1	1.2	0.2	0.0	0.2	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			86.0									
HCM 6th LOS			F									

Lane Group EBL EBT WBL WBT NBL NBT SBL SBT
Lane Group Flow (vph) 195 844 89 528 54 520 185 392
v/c Ratio 0.78 1.42 0.45 0.99 0.16 0.99 0.75 0.50
Control Delay 47.7 229.6 26.6 79.2 21.8 76.3 45.6 23.0
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total Delay 47.7 229.6 26.6 79.2 21.8 76.3 45.6 23.0
Queue Length 50th (ft) 94 ~885 38 ~431 25 ~402 88 183
Queue Length 95th (ft) #200 #1169 71 #651 53 #623 #184 275
Internal Link Dist (ft) 1715 1136 295 1065
Turn Bay Length (ft) 150 175 150 200
Base Capacity (vph) 268 596 267 533 328 525 266 789
Starvation Cap Reductn 0 0 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0 0
Reduced v/c Ratio 0.73 1.42 0.33 0.99 0.16 0.99 0.70 0.50

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection						
Int Delay, s/veh	2.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	7		1100	4	Y	TTDT (
Traffic Vol, veh/h	667	37	67	805	27	40
Future Vol, veh/h	667	37	67	805	27	40
Conflicting Peds, #/hr		0	0	000	0	0
	Free					
Sign Control RT Channelized	Free -	Free None	Free	Free None	Stop	Stop None
					-	
Storage Length	- - # 0	-	-	-	0	-
Veh in Median Storag		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	3	3	3	1	3	3
Mvmt Flow	695	39	70	839	28	42
Major/Minor	Major1	ľ	Major2		Minor1	
Conflicting Flow All	0	0	734	0	1694	715
Stage 1	-	-	-	-	715	-
Stage 2	_	_	_	_	979	_
Critical Hdwy	_	_	4.13	_	6.43	6.23
Critical Hdwy Stg 1	_	_	7.10	_	5.43	0.20
Critical Hdwy Stg 2			_	_	5.43	
, ,	-	-	2.227	-	3.527	
Follow-up Hdwy	-	-		-		
Pot Cap-1 Maneuver	-	-	866	-	102	429
Stage 1	-	-	-	-	483	-
Stage 2	-	-	-	-	363	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver		-	866	-	87	429
Mov Cap-2 Maneuver	-	-	-	-	87	-
Stage 1	-	-	-	-	483	-
Stage 2	-	-	-	-	308	-
Approach	EB		WB		NB	
HCM Control Delay, s			0.7		41.6	
•	U		0.7		_	
HCM LOS					E	
Minor Lane/Major Mvi	nt N	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		166	-	-	866	-
HCM Lane V/C Ratio		0.42	-	-	0.081	-
HCM Control Delay (s	3)	41.6	-	-	9.5	0
HCM Lane LOS		E	-	_	Α	A
HCM 95th %tile Q(veh	1)	1.9	-	-	0.3	-
,						

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	59	0	6	8	0	17	5	323	15	29	362	166
Future Vol, veh/h	59	0	6	8	0	17	5	323	15	29	362	166
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	3	3	3	3	1	3	3	1	3
Mvmt Flow	69	0	7	9	0	20	6	376	17	34	421	193
Major/Minor	Minor2			Minor1			Major1		ı	Major2		
Conflicting Flow All	993	991	518	986	1079	385	614	0	0	393	0	0
Stage 1	586	586	-	397	397	-	-	-	-	-	-	-
Stage 2	407	405	-	589	682	-	-	-	-	-	-	-
Critical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1	6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Follow-up Hdwy	3.527	4.027	3.327	3.527	4.027	3.327		-	-	2.227	-	-
Pot Cap-1 Maneuver	223	245	556	226	217	660	961	-	-	1160	-	-
Stage 1	495	495	-	627	602	-	-	-	-	-	-	-
Stage 2	619	597	-	493	448	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	207	232	556	214	205	660	961	-	-	1160	-	-
Mov Cap-2 Maneuver	207	232	-	214	205	-	-	-	-	-	-	-
Stage 1	491	472	-	622	597	-	-	-	-	-	-	-
Stage 2	596	592	-	464	427	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	29.7			14.8			0.1			0.4		
HCM LOS	D			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		961		-	220	396	1160		-			
HCM Lane V/C Ratio		0.006	-	_	0.344			<u>-</u>	_			
HCM Control Delay (s)		8.8	0	_	29.7	14.8	8.2	0	_			
HCM Lane LOS		A	A	_	D	В	A	A	_			
HCM 95th %tile Q(veh)	0	-	_	1.5	0.2	0.1	-	_			
	1				1.0	V.2	V . 1					

	٨	-	•	~		•	1	1	1	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	1		1	1		7	13	
Traffic Volume (veh/h)	171	598	24	233	690	75	58	228	90	140	271	207
Future Volume (veh/h)	171	598	24	233	690	75	58	228	90	140	271	207
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4050	No	4050	1050	No	4050	4000	No	4000	4050	No	4050
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1803	1803	1803	1856	1856	1856
Adj Flow Rate, veh/h	188	657	26	256	758	82	64	251	99	154	298	227
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	216	521	21	266	530	57	161	393	155	183	318	243
Arrive On Green	0.09	0.29	0.29	0.12	0.32	0.32	0.06	0.32	0.32	0.07	0.33	0.33
Sat Flow, veh/h	1767	1773	70	1767	1645	178	1717	1230	485	1767	977	744
Grp Volume(v), veh/h	188	0	683	256	0	840	64	0	350	154	0	525
Grp Sat Flow(s),veh/h/ln	1767	0	1843	1767	0	1823	1717	0	1715	1767	0	1722
Q Serve(g_s), s	8.5	0.0	35.3	13.2	0.0	38.7	4.9	0.0	20.9	6.2	0.0	35.5
Cycle Q Clear(g_c), s	8.5	0.0	35.3	13.2	0.0	38.7	4.9	0.0	20.9	6.2	0.0	35.5
Prop In Lane	1.00	0	0.04	1.00	0	0.10	1.00	^	0.28	1.00	^	0.43
Lane Grp Cap(c), veh/h	216	0	542	266	0	587	0	0	548	183	0	561
V/C Ratio(X)	0.87 266	0.00	1.26 542	0.96	0.00	1.43	0.00	0.00	0.64	0.84	0.00	0.94
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	0 1.00	1.00	266 1.00	0 1.00	587 1.00	0 1.00	0 1.00	548 1.00	266 1.00	1.00	766 1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	29.8	0.00	42.4	34.5	0.00	40.7	0.0	0.00	34.9	30.9	0.00	39.2
Incr Delay (d2), s/veh	21.8	0.0	131.8	44.6	0.0	203.2	0.0	0.0	2.4	14.5	0.0	15.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.7	0.0	35.1	8.7	0.0	49.7	0.0	0.0	9.0	2.9	0.0	17.0
Unsig. Movement Delay, s/veh		0.0	JJ. I	0.7	0.0	43.1	0.0	0.0	9.0	2.3	0.0	17.0
LnGrp Delay(d),s/veh	51.6	0.0	174.2	79.1	0.0	243.9	0.0	0.0	37.3	45.4	0.0	54.4
LnGrp LOS	D D	Α	F	75.1 E	Α	240.5 F	Α	Α	D	75.7 D	Α	D
Approach Vol, veh/h		871			1096	<u> </u>		414			679	
Approach Vol, verim		147.7			205.4			31.5			52.4	
Approach LOS		F			200.4 F			C C			02. 4	
											D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	19.6	42.3	13.0	45.1	16.2	45.7	13.8	44.3				
Change Period (Y+Rc), s	5.6	7.0	6.0	6.0	5.6	7.0	5.4	6.0				
Max Green Setting (Gmax), s	14.0	34.0	53.4	53.4	14.0	34.0	14.0	34.0				
Max Q Clear Time (g_c+l1), s	15.2	37.3	6.9	37.5	10.5	40.7	8.2	22.9				
Green Ext Time (p_c), s	0.0	0.0	0.2	1.6	0.2	0.0	0.2	0.8				
Intersection Summary												
HCM 6th Ctrl Delay			131.5									
HCM 6th LOS			F									

	•	-	1	+	4	1	1	1
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	188	683	256	840	64	350	154	525
v/c Ratio	0.75	1.14	0.82	1.27	0.44	0.85	0.56	0.78
Control Delay	45.5	120.7	51.1	168.9	36.2	60.4	31.8	38.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.5	120.7	51.1	168.9	36.2	60.4	31.8	38.0
Queue Length 50th (ft)	90	~684	139	~855	36	247	78	324
Queue Length 95th (ft)	#207	#919	#326	#1190	75	341	115	417
Internal Link Dist (ft)		1715		1136		295		1065
Turn Bay Length (ft)	150		175		150		200	
Base Capacity (vph)	274	598	313	659	172	505	302	790
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.69	1.14	0.82	1.27	0.37	0.69	0.51	0.66

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2028 BUILD IMPROVED CONDITIONS

	٠		•	~		•	1	†	~	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1		1	1		7	1		7	1	
Traffic Volume (veh/h)	189	788	31	86	430	82	52	249	255	179	196	184
Future Volume (veh/h)	189	788	31	86	430	82	52	249	255	179	196	184
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1803	1803	1803	1856	1856	1856
Adj Flow Rate, veh/h	195	812	32	89	443	85	54	257	263	185	202	190
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	334	764	30	144	605	116	149	231	237	212	275	258
Arrive On Green	0.08	0.43	0.43	0.05	0.40	0.40	0.05	0.28	0.28	0.09	0.31	0.31
Sat Flow, veh/h	1767	1773	70	1767	1513	290	1717	817	836	1767	879	827
Grp Volume(v), veh/h	195	0	844	89	0	528	54	0	520	185	0	392
Grp Sat Flow(s), veh/h/ln	1767	0	1843	1767	0	1803	1717	0	1652	1767	0	1707
Q Serve(g_s), s	7.8	0.0	51.7	3.3	0.0	29.8	4.1	0.0	34.0	8.3	0.0	24.6
Cycle Q Clear(g_c), s	7.8	0.0	51.7	3.3	0.0	29.8	4.1	0.0	34.0	8.3	0.0	24.6
Prop In Lane	1.00	0.0	0.04	1.00	0.0	0.16	1.00	0.0	0.51	1.00	0.0	0.48
Lane Grp Cap(c), veh/h	334	0	794	144	0	721	0	0	468	212	0	533
V/C Ratio(X)	0.58	0.00	1.06	0.62	0.00	0.73	0.00	0.00	1.11	0.87	0.00	0.74
Avail Cap(c_a), veh/h	334	0.00	794	198	0.00	721	0.00	0.00	468	216	0.00	711
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	23.0	0.0	34.2	28.3	0.0	30.6	0.0	0.0	43.0	33.2	0.0	36.8
Incr Delay (d2), s/veh	2.6	0.0	50.1	4.3	0.0	6.5	0.0	0.0	75.4	29.9	0.0	2.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.3	0.0	32.5	1.5	0.0	13.6	0.0	0.0	23.4	4.5	0.0	10.5
Unsig. Movement Delay, s/veh		0.0	02.0	1.0	0.0	10.0	0.0	0.0	20.4	7.0	0.0	10.5
LnGrp Delay(d),s/veh	25.6	0.0	84.2	32.6	0.0	37.0	0.0	0.0	118.4	63.2	0.0	39.4
LnGrp LOS	23.0 C	Α	04.2 F	02.0 C	Α	57.0 D	Α	Α	F	03.Z E	Α	55.4 D
Approach Vol, veh/h		1039	<u> </u>		617	<u> </u>		574		<u> </u>	577	
		73.2			36.4			107.3			47.0	
Approach Delay, s/veh		73.2 E			30.4 D			107.3 F			47.0 D	
Approach LOS		E			U			Г			U	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.3	58.4	12.2	43.5	15.0	54.7	15.7	40.0				
Change Period (Y+Rc), s	5.6	7.0	6.0	6.0	5.6	7.0	5.4	6.0				
Max Green Setting (Gmax), s	9.4	42.0	50.0	50.0	9.4	42.0	10.6	34.0				
Max Q Clear Time (g_c+l1), s	5.3	53.7	6.1	26.6	9.8	31.8	10.3	36.0				
Green Ext Time (p_c), s	0.1	0.0	0.1	1.2	0.0	6.3	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			66.7									
HCM 6th LOS			E									
Notes												

User approved pedestrian interval to be less than phase max green.

3: Von Ohsen Road/Royle Road & US 78

Lane Group EBL EBT WBL WBT NBL NBT SBL SBT Lane Group Flow (vph) 195 844 89 528 54 520 185 392 v/c Ratio 0.75 1.28 0.48 0.83 0.18 1.03 0.85 0.53 Control Delay 38.3 171.6 26.4 48.0 24.4 86.5 60.2 25.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 38.3 171.6 26.4 48.0 24.4 86.5 60.2 25.9 Queue Length 50th (ft) 85 ~839 36 367 26 ~405 91 196
v/c Ratio 0.75 1.28 0.48 0.83 0.18 1.03 0.85 0.53 Control Delay 38.3 171.6 26.4 48.0 24.4 86.5 60.2 25.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 38.3 171.6 26.4 48.0 24.4 86.5 60.2 25.9
Control Delay 38.3 171.6 26.4 48.0 24.4 86.5 60.2 25.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 38.3 171.6 26.4 48.0 24.4 86.5 60.2 25.9
Queue Delay 0.0 <th< td=""></th<>
Total Delay 38.3 171.6 26.4 48.0 24.4 86.5 60.2 25.9
,
Output Longth F0th (ft) 95 -920 26 267 26 -405 01 106
Queue Length 50th (ft) 85 ~839 36 367 26 ~405 91 196
Queue Length 95th (ft) #153 #1094 68 #550 57 #623 #220 293
Internal Link Dist (ft) 1715 1136 295 1065
Turn Bay Length (ft) 150 175 150 200
Base Capacity (vph) 260 659 200 635 292 506 217 740
Starvation Cap Reductn 0 0 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0 0
Reduced v/c Ratio 0.75 1.28 0.45 0.83 0.18 1.03 0.85 0.53

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

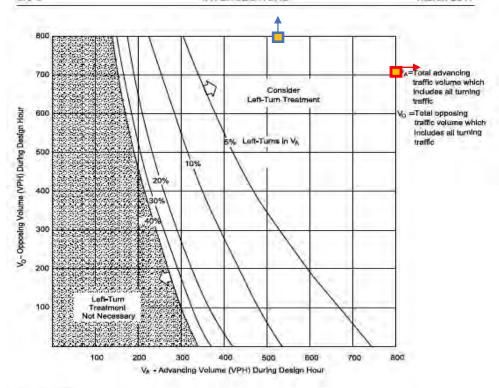
	٨	-	•	1	\$24550 \$46550	•	1	1	~	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1		1	T _a		1	f)		1	T ₃	
Traffic Volume (veh/h)	171	598	24	233	690	75	58	228	90	140	271	207
Future Volume (veh/h)	171	598	24	233	690	75	58	228	90	140	271	207
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1803	1803	1803	1856	1856	1856
Adj Flow Rate, veh/h	188	657	26	256	758	82	64	251	99	154	298	227
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	204	571	23	276	597	65	161	392	155	185	318	242
Arrive On Green	0.08	0.32	0.32	0.12	0.36	0.36	0.06	0.32	0.32	0.07	0.33	0.33
Sat Flow, veh/h	1767	1773	70	1767	1645	178	1717	1230	485	1767	977	744
Grp Volume(v), veh/h	188	0	683	256	0	840	64	0	350	154	0	525
Grp Sat Flow(s),veh/h/ln	1767	0	1843	1767	0	1823	1717	0	1715	1767	0	1722
Q Serve(g_s), s	8.6	0.0	38.7	13.1	0.0	43.6	4.9	0.0	21.0	6.2	0.0	35.5
Cycle Q Clear(g_c), s	8.6	0.0	38.7	13.1	0.0	43.6	4.9	0.0	21.0	6.2	0.0	35.5
Prop In Lane	1.00		0.04	1.00		0.10	1.00		0.28	1.00		0.43
Lane Grp Cap(c), veh/h	204	0	594	276	0	662	0	0	546	185	0	561
V/C Ratio(X)	0.92	0.00	1.15	0.93	0.00	1.27	0.00	0.00	0.64	0.83	0.00	0.94
Avail Cap(c_a), veh/h	204	0	594	276	0	662	0	0	546	357	0	755
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	31.9	0.0	40.7	34.8	0.0	38.2	0.0	0.0	35.0	30.5	0.0	39.3
Incr Delay (d2), s/veh	41.3	0.0	85.9	35.1	0.0	132.8	0.0	0.0	2.4	9.3	0.0	15.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.8	0.0	30.8	8.0	0.0	42.8	0.0	0.0	9.0	3.0	0.0	17.1
Unsig. Movement Delay, s/veh	l											
LnGrp Delay(d),s/veh	73.2	0.0	126.6	69.9	0.0	171.0	0.0	0.0	37.5	39.8	0.0	54.9
LnGrp LOS	Е	Α	F	Е	Α	F	Α	Α	D	D	Α	D
Approach Vol, veh/h		871			1096			414			679	
Approach Delay, s/veh		115.1			147.4			31.7			51.5	
Approach LOS		F			F			С			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	20.3	45.2	13.0	45.1	15.4	50.1	13.9	44.2				
Change Period (Y+Rc), s	5.6	7.0	6.0	6.0	5.6	7.0	5.4	6.0				
Max Green Setting (Gmax), s	14.7	34.1	52.6	52.6	9.8	39.0	20.2	27.0				
Max Q Clear Time (g_c+l1), s	15.1	40.7	6.9	37.5	10.6	45.6	8.2	23.0				
Green Ext Time (p_c), s	0.0	0.0	0.2	1.6	0.0	0.0	0.3	0.4				
Intersection Summary												
HCM 6th Ctrl Delay			101.2									
HCM 6th LOS			F									

3: Von Ohsen Road/Royle Road & US 78

Lane Group EBL EBT WBL WBT NBL NBT SBL SBT Lane Group Flow (vph) 188 683 256 840 64 350 154 525 v/c Ratio 0.79 1.15 0.84 1.27 0.42 0.83 0.54 0.76 Control Delay 50.7 122.4 55.0 169.0 34.4 59.0 30.7 36.9 Queue Delay 0.0
v/c Ratio 0.79 1.15 0.84 1.27 0.42 0.83 0.54 0.76 Control Delay 50.7 122.4 55.0 169.0 34.4 59.0 30.7 36.9 Queue Delay 0.0
Control Delay 50.7 122.4 55.0 169.0 34.4 59.0 30.7 36.9 Queue Delay 0.0 0.
Queue Delay 0.0 36.9 Queue Length 95th (ft) #246 #917 #318 #1127 75 #362 117 423 Internal Link Dist (ft) 150 175 150 295 1065
Total Delay 50.7 122.4 55.0 169.0 34.4 59.0 30.7 36.9 Queue Length 50th (ft) 92 ~683 141 ~879 35 245 77 319 Queue Length 95th (ft) #246 #917 #318 #1127 75 #362 117 423 Internal Link Dist (ft) 1715 1136 295 1065 Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 238 596 305 659 176 439 389 779
Queue Length 50th (ft) 92 ~683 141 ~879 35 245 77 319 Queue Length 95th (ft) #246 #917 #318 #1127 75 #362 117 423 Internal Link Dist (ft) 1715 1136 295 1065 Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 238 596 305 659 176 439 389 779
Queue Length 95th (ft) #246 #917 #318 #1127 75 #362 117 423 Internal Link Dist (ft) 1715 1136 295 1065 Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 238 596 305 659 176 439 389 779
Internal Link Dist (ft) 1715 1136 295 1065 Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 238 596 305 659 176 439 389 779
Turn Bay Length (ft) 150 175 150 200 Base Capacity (vph) 238 596 305 659 176 439 389 779
Base Capacity (vph) 238 596 305 659 176 439 389 779
Starvation Can Reductn 0 0 0 0 0 0 0 0
otal valion out it to the control of
Spillback Cap Reductn 0 0 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0 0
Reduced v/c Ratio 0.79 1.15 0.84 1.27 0.36 0.80 0.40 0.67

Intersection Summary

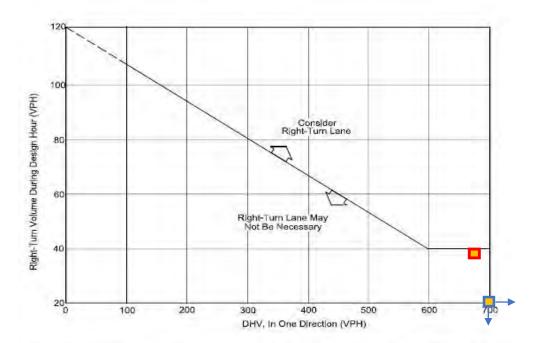
Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Appendix E – Turn Lane Warrant Analyses


Instructions.

- The family of curves represents the percent of left turns in the advancing volume (V_A).
 The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
- 2. Read V_A and V_O into the chart and locate the intersection of the two volumes.
- Note the location of the point in #2 relative to the line in #1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

VOLUME GUIDELINES FOR LEFT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS (45 mph) Figure 9.5-F

US 78 at EquipmentShare Access/Site Access #1

Westbound	Left	Va	Vo	LTs	LT %
	2027 Build	521	845	21	4.0%
	2031 Build	872	704	67	7.7%

Note: For highways with a design speed below 50 miles per hour with a DHV < 300 and where right turns > 40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

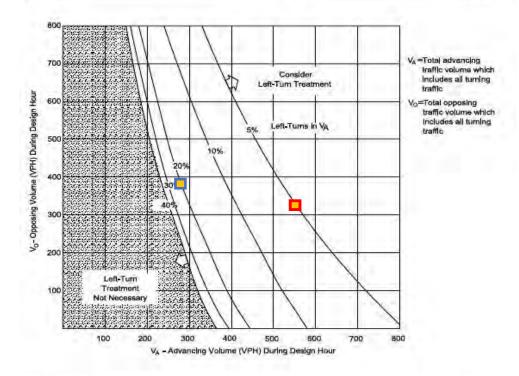
Example

Given: Design Speed = 35 miles per hour
DHV = 250 vehicles per hour

Right Turns = 100 vehicles per hour

Problem: Determine if a right-turn lane is necessary.

Solution: To read the vertical axis, use 100 - 20 = 80 vehicles per hour. The figure


indicates that a right-turn lane is not necessary, unless other factors (e.g., high

crash rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS Figure 9.5-A

US 78 at Equipment Share Access

Eastbound	Right	DHV	RTs
	2023 Build AM	830	15
-	2023 Build PM	667	37

Instructions:

- The family of curves represents the percent of left turns in the advancing volume (V_A).
 The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
- Read V_A and V_O into the chart and locate the intersection of the two volumes.
- Note the location of the point in #2 relative to the line in #1. If the point is to the right of the line, then a left-turn lane is warranted. If the point is to the left of the line, then a leftturn lane is not warranted based on traffic volumes.

VOLUME GUIDELINES FOR LEFT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS (40 mph) Figure 9.5-G

Von Ohsen Road at Dunmeyer Road / Site Access #2

Southbound	Left	Va	Vo	LTs	LT %
	2028 Build AM	271	389	9	3.3%
	2028 Build PM	557	323	29	5.2%

Aponte, Crystal

From: Todd-Burke, Andrew

Sent: Monday, April 17, 2023 12:57 PM

To: Aponte, Crystal

Subject: FW: Elms Glen TIA Report

Attachments: 2022-02-21 Elms Glen Response Memo.pdf

Andrew Todd-Burke, PLA, ASLA

Kimley-Horn | 115 Fairchild Street, Suite 250, Charleston, SC 29492 Direct: 843 823 6793 | Mobile: 843 329 2269 | www.kimley-horn.com

Connect with us: Twitter | LinkedIn | Facebook | Instagram

Celebrating 14 years as one of FORTUNE's 100 Best Companies to Work For

From: Turner, Dillon < Dillon. Turner@kimley-horn.com>

Sent: Tuesday, March 28, 2023 4:31 PM

To: Todd-Burke, Andrew < Andrew. Todd-Burke@kimley-horn.com>

Subject: Fwd: Elms Glen TIA Report

Get Outlook for iOS

From: Turner, Dillon < Dillon.Turner@kimley-horn.com>

Sent: Tuesday, June 21, 2022 9:17:43 AM

To: Connelly, Reeves <Reeves.Connelly@kimley-horn.com>; Todd-Burke, Andrew.Todd-Burke@kimley-

horn.com>

Subject: Fwd: Elms Glen TIA Report

See email from Josh. Get Outlook for iOS

From: Johnson, Joshua A. < <u>JohnsonJA@scdot.org</u>> Sent: Tuesday, February 22, 2022 7:25:24 PM To: Turner, Dillon < <u>Dillon.Turner@kimley-horn.com</u>>

Cc: Todd-Burke, Andrew <Andrew.Todd-Burke@kimley-horn.com>; Aponte, Crystal <Crystal.Aponte@kimley-horn.com>;

Fleming, Juleigh B. < FlemingJB@scdot.org; Grooms, Robert W. < GroomsRW@scdot.org; Payne, Adam C.

<PayneAC@scdot.org>

Subject: RE: Elms Glen TIA Report

Dillon,

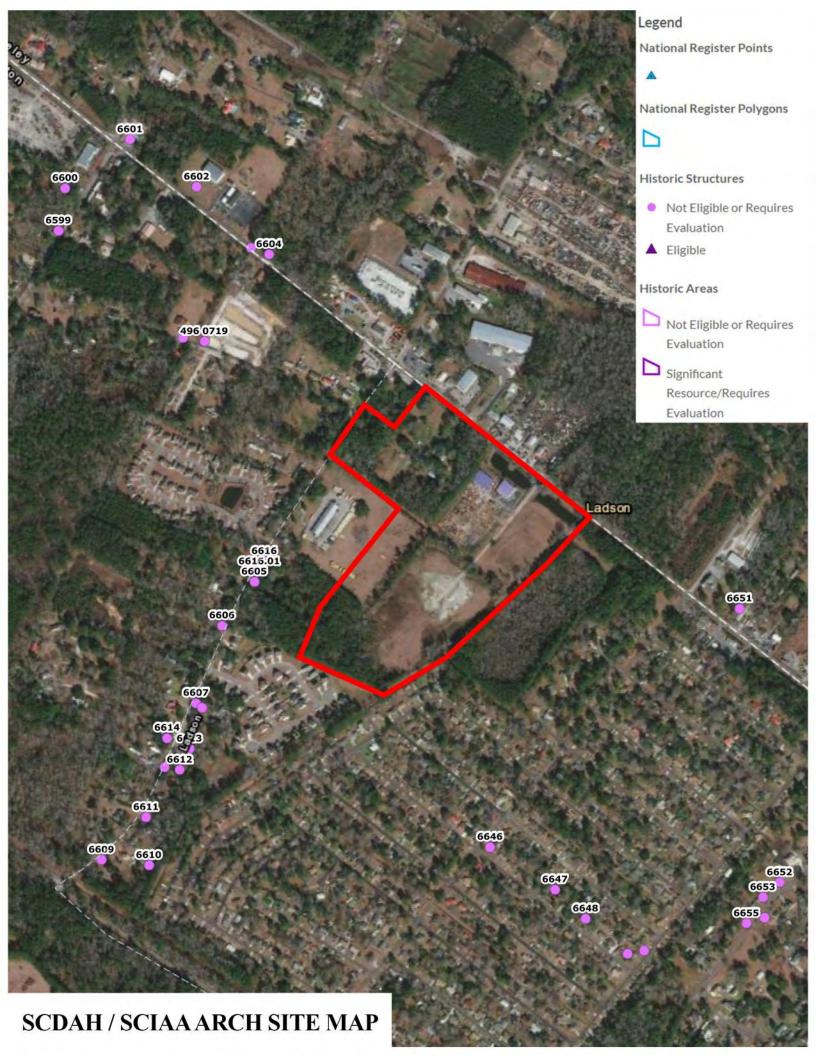
The Elms Glen TIA with addendum is accepted with the proposed mitigation of left- and right-turn lanes at the site access on US 78. Please upload the TIA and this approval email with the encroachment application in EPPS.

Thank you,
Josh Johnson, PE, PTOE
District Traffic Engineer
SCDOT District 6

From: Turner, Dillon < Dillon. Turner@kimley-horn.com >

Sent: Monday, February 21, 2022 12:07 PM To: Johnson, Joshua A. < Johnson JA@scdot.org >

Cc: Todd-Burke, Andrew < Andrew. Todd-Burke@kimley-horn.com>; Aponte, Crystal < Crystal. Aponte@kimley-horn.com>


Subject: RE: Elms Glen TIA Report

*** This is an EXTERNAL email. Please do not click on a link or open any attachments unless you are confident it is from a trusted source. ***

Josh,

We hope you are doing well! Please see the formalized comment responses for the Elms Glen TIA Report. Please let us know if you need anything else.

Thank You, Dillon Turner

July 20, 2022

Kimley-Horn

Attn: Crystal Aponte

115 Fairchild Street, Ste 250

Charleston, SC 29492

Subject: TMS #'s: 388-00-00-116, 118, 119, 139, 140, 163

177, 178 & 223 and 388-02-00-131, 132 & 443

Elms Glen Project, Ladson SC

Operations Division

Donald R. Kennedy, Sr. Superintendent of Schools

Jeffrey Borowy, P.E. Chief Operating Officer Dear Ms. Aponte:

Please accept this letter as "Proof of Coordination" and inadequate service capacity for the proposed Elms Glen Project in Ladson SC (Hwy 78 & Von Ohsen Rd), consisting of approximately 222 proposed single family units.

To determine an estimate of student yield that any development may create, a statistical formula is applied at the elementary, middle, and high school levels based on the type and number of units to be built.

On the basis of the location supplied to us, we expect significant impact to enrollment from a capacity standpoint. The three main schools that fall within the attendance zone where the development will take place are listed below, and are subject to zoning modification.

- Ladson Elementary
- · Deer Park Middle
- Stall High

Please contact me at (843) 566-1995 if you have any questions and/or concerns.

Sincerely,

Angela Barnette, M.Ed.

Director of Planning & Real Estate

PO Box B Charleston, SC 29402 103 St. Philip Street (29403)

(843) 727-6800 www.charlestonwater.com

Board of Commissioners

Thomas B. Pritchard, Chairman Kathleen G. Wilson, Vice Chairman William E. Koopman, Jr., Commissioner Mayor John J. Tecklenburg (Ex-Officio) Councilmember Perry K. Waring (Ex-Officio)

Officers

Kin Hill, P.E., Chief Executive Officer Mark Cline, P.E., Assistant Chief Executive Officer Dorothy Harrison, Chief Administrative Officer Wesley Ropp, CMA, Chief Financial Officer Russell Huggins, P.E., Capital Projects Officer

July 15, 2022

Crystal Aponte
Kimley-Horn
Crystal.aponte@kimley-horn.com

Water Availability to TMS: 388-02-00-131, 132, 388-00-00-163, 139, 443, 116, 118, 119, 140 Re. Multi Family Development

This letter is to certify our willingness and ability to provide water service to the above referenced site in Charleston County, South Carolina. CWS currently has a 24" water main in the ROW of Highway 78, and 8" water mains in the ROW of both Von Oshen Road and Midview Drive which may serve the development. Upon submittal of formal plans, CWS may require looping of new water mains.

It will of course be a developer responsibility to ensure there are adequate pressures and quantities on the existing mains to serve this site with domestic water/fire flow and not negatively impact the existing developments. Please be advised any extensions or modifications to the infrastructure as well as any additional fire protection will be a developer's expense. All fees and cost associated with providing service to this site will be a developer expense and will be due prior to connection of any Charleston Water System's water system. This letter does not reserve capacity in the Charleston Water System infrastructure, and it is incumbent upon the developer or his agent to confirm the availability herein granted past 12 months of this correspondence.

The Charleston Water System certifies the availability of service only insofar as its rights allow. Should access to our existing main/mains be denied by appropriate governing authorities, the Charleston Water System will have no other option than to deny service. This letter is not to be construed as a letter of acceptance for operation and maintenance from the Department of Health and Environmental Control.

If there are any questions pertaining to this letter, please do not hesitate to call on me at (843) 727-6869.

Sincerely,

Lydia Owens Charleston Water System

Lyoha Owen

7/18/2022

Crystal Ana Aponte

Landscape Architect Analyst 115 Fairchild Street, Suite 250 Charleston, SC 29492 843-737-6390

Attn: Crystal Ana Aponte

Re: Sanitary sewer availability to TMS 388-02-00-131, 388-00-00-443, 388-00-00-118, 388-00-00-163, 388-02-00-132, 388-00-00-119, 388-00-00-139, 388-00-00-116, 388-00-00-140

Dear Ms. Aponte,

Please be advised that sanitary sewer service is not available to 388-02-00-131, 388-00-00-443, 388-00-00-163. For these properties to have access to sewer, a pump station will need to be installed at the owner's expense.

Please be advised that sanitary sewer service is available to TMS 388-00-00-118, 388-02-00-132, 388-00-00-119, 388-00-00-139, 388-00-00-116 and 388-00-00-140. The property owner is responsible for installing a service into the main line or manhole located in an easement/right-of-way next to the property. If this property is subdivided, the property owner will be responsible for any sewer line modifications necessary to provide sewer service to each lot. If you have any questions, please call me at 843-764-3072.

Sincerely,

Kevin Trepen

New Development Coordinator North Charleston Sewer District

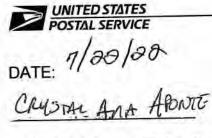
July 18, 2022

Crystal A. Aponte Kimley-Horn 115 Fairchild St., Ste. 250 Charleston SC 29492

RE: TMS 388-02-00-131, -132 388-00-00-136, -139,-116,-118,-119,-140 Summerville, SC The Elms Glen Project

Dear Crystal:

I am pleased to inform you that Dominion Energy will be able to provide electric and gas service to the above referenced project located in Summerville, South Carolina. Electric and Gas services will be provided in accordance with Dominion's General Terms and Conditions, other documents on file with the South Carolina Public Service Commission, and the company's standard operating policies and procedures. Any associated customer contribution will be determined when equipment loads and projected revenues are analyzed. In order to begin engineering work for the project, the following information will need to be provided:


- Detailed utility site plan (AutoCAD format preferred) showing water, sewer, and storm drainage as well as requested service point/transformer location.
- Additional drawings that indicate wetlands boundaries, tree survey with barricade plan and buffer zones (if required), as well as any existing or additional easements will also be needed.
- Electric load breakdown by type with riser diagrams
- Signed copy of this letter acknowledging its receipt and responsibility for its contents and authorization to begin engineering work with the understanding that Dominion Energy intends to serve the referenced project.

Dominion Energy's construction standards and specifications are available online. For more information or questions, please contact me by phone at (843) 576-8442 or denise.ware@dominionenergy.com.

Sincerely,

M. Denise T. Ware

M. Denise Tindell-Ware, ACEM Customer Service Engineering Project /Account Manager

115 FAIRENLUS 5 AVE 250

CHAPLESTON, SC 29492

Ref: Proof of coordination

This letter is proof of coordination for ELMS GLEN, Hwy 78 & VOW OSHEN RD.

and the United States Postal Service; South Carolina District, Growth Management.

Respectfully,

Eric Sigmon // USPS; GSC District

Growth Management Coordinator

eric.r.sigmon@usps.gov

C-803-662-5436 O-(803) 926-6258

C&B FIRE DEPARTMENT

509 Royle Rd, Ladson, SC 29456 Office (843)873-0714

> Fire Chief Joshua K Woodall

718/2022

Good Morning Crystal

C&B Fire Department is aware of the subdivision Elms Glen, going in at the corner of Hwy 78 & Von Oshen Rd.

This is in our response area. We will serve this community, as we would serve any other area in our fire district.

Just for your records, our department's ISO rating is a Class 3.

Thanks for keeping C&B in the loop for this project.

If you have any questions, or if we can be of service, please let me know.

843-708-9428

rbryant@cbfiredept.org

Regards.

Ronny Bryant

Deputy Chief

C&B FD

Steven L. Thigpen, P. E. Director of Public Works

August 5, 2022

Fax: 843.202.7601 sthigpen@charlestoncounty.org Lonnie Hamilton III Public Services Building 4045 Bridge View Drive, Suite A301 North Charleston, SC 29405

843,202,7600

Kimley-Horn

Attn.: Mr. Andrew Todd-Burke 115 Fairchild Street, Suite 250 Charleston, SC 29492

RE:

US HIGHWAY 78 BUSINESS PARK AMENDMENT ELMS GLEN TMS # 388-00-

00-223 / 443 / 163 / 178 / 177 / 139 / 118 / 119 / 140 / 116

Dear Mr. Richardson:

Charleston County Public Works has been made aware of the draft US Hwy 78 Business Park Planned Development Amendment Elms Glen for mixed use development of residential, commercial, and industrial uses with supporting infrastructure development on Highway 78 and Von Ohsen Road at TMS No.'s 388-00-00-223 / 443 / 163 / 187 / 177 / 139 / 118 / 119 / 140 and 116. This letter represents sufficient coordination with the Public Works Department to continue through the planned development process for the property.

This coordination letter does not represent a technical or comprehensive review or approval for this planned development. Based on the submitted documents, Public Works has determined a Stormwater MS4 application will be required.

This permit application submittals must address criteria set by Planning Commission Rezoning Approval Conditions, Charleston County Stormwater Program Permitting Standards and Procedures Manual, and Zoning and Land Development Regulations.

Sincerely,

CC:

Wesley D. Linker, P.E.

Technical Programs Manager

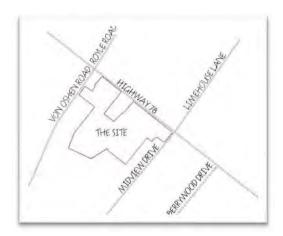
Emily Wynn - Charleston County Planning Department

CHARLESTON AREA REGIONAL TRANSPORTATION AUTHORITY

August 3, 2022

Crystal Ana Aponte Kimley-Horn 115 Fairchild Street, Suite 250, Charleston, SC 29492

RE: Letter of Coordination


Dear Ms. Aponte,

Thank you for contacting us regarding your Elms Glen Project. No further approvals are required by CARTA. A BRT corridor has been proposed for this region along Rivers Avenue and is currently undergoing planning and design. There will be an impact to the right-of-way. For more information on the LCRT please visit this website (https://lowcountryrapidtransit.com/) or email us at info@lowcountryrapidtransit.com/).

Thank you again, Belén K. Vitello

COMMUNITY WORKSHOP NOTICE

You are invited to attend an informal community workshop regarding the proposed Planned Development rezoning of "Elms Glen", to be located near the intersection of Highway 78 and Von Oshen Road.

The community workshop will be held on Tuesday, April 27th from 5pm to 6pm.

Zoom Meeting Information

Meeting ID: 872 3970 9551 Passcode: 348882

https://us02web.zoom.us/j/87239709551?pwd=bWt2ZEVzUDhFbVhrZlg3cWlZNDdzQT09

Phone number: 1 (301) 715-8592

The meeting will be held virtually via Zoom. Please use the information above to access via computer or telephone. If you would like to submit a comment or a question to be answered at the meeting please email HLAinc@outlook.com

You can also mail comments to HLA at 29A Leinbach Dr. Charleston, SC 29407. Please submit comments or questions by 12:00 pm on Tuesday, April 27th.